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ABSTRACT 

 

This paper presents work sponsored by Phase I Small Business Innovation Research (SBIR) funding from the Office 

of Naval Research to develop a system that combines valuable aspects of intelligent tutoring systems and human-to-

human adaptive training to aid instructors in providing individualized training. Our system, the Virtual Observer 

Controller for Adaptive Training (VOCAT), is an adaptive, intelligent virtual observer controller that has been built 

and demonstrated to run end-to-end in a synthetic training event example. Human instructors recognize that 

observed student actions may be the result of many possible cognitive reasoning paths and are able to provide 

student-specific guidance accordingly. VOCAT aims to aid instructors and enhance human-led adaptive training by 

reflecting on student-specific cognitive process models in order to: 1) identify how and when to provide student-

specific guidance during training and 2) identify students' cognitive reasoning behind key decision points for use in 

an after action review. 
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INTRODUCTION 

 

Individualized, human-to-human adaptive training has been shown to be 98% more effective than traditional, group-

based instruction (Bloom, 1984). While highly effective, this approach is neither time nor cost-efficient for maritime 

training purposes; its efficacy relies heavily on the instructor's ability to determine how and when to intervene to 

address the cognitive problems of the student (Porayska-Pomsta et al., 2008). In contrast, traditional intelligent 

tutoring systems are more efficient but only 36% more effective than group-based methods, lacking the 

effectiveness of one-on-one, human-led training (Dede, 2008). 
 

Our solution, the Virtual Observer Controller for Adaptive Training (VOCAT), is an adaptive, intelligent virtual 

observer controller that combines valuable aspects of intelligent tutoring systems and human-to-human adaptive 

training to aid instructors in providing efficient and effective individualized training. The VOCAT system is used by 

an instructor to monitor student progress, adapt the training scenario in real time, and collect quantitative data for 

use in the after action review (AAR). VOCAT extends the science of real-time adaptive training for the Navy 

through its unique approach of utilizing student-specific cognitive process models to aid during training. This 

approach, supported by Phase I Small Business Innovation Research (SBIR) funding from the Office of Naval 

Research, serves as the focus of this paper.  

 

In this paper, we begin with background information on the knowledge capture and behavior modeling approach 

used in developing the VOCAT system. Next, we describe the VOCAT system's authoring console and use of 

training task blocks as well as an overview of the VOCAT model architecture. We then describe a framework for the 

creation of student-specific cognitive process models and the implementation of a critic model within VOCAT that 

infers cognitive reasoning patterns from the models for training use. We end with an example of the VOCAT system 

running end-to-end in a synthetic training scenario, showing its technical merit, as well as a discussion of planned 

future work.  

 

 

BACKGROUND 

 

Knowledge Capture Methodology 

 

Throughout the research effort described in this paper, we have used a knowledge capture methodology and toolset 

designed to help subject matter experts (SMEs) recall and articulate their tacit knowledge. The Discovery Machine® 

Methodology is a patented approach to SME knowledge acquisition resulting in knowledge which can be easily 

modeled. Iterative phases within this methodology -- expert domain scoping, conceptualize, formalize, 

operationalize, and test/deploy -- proceed from abstract to more concrete, resulting in executable models that 

perform tasks similar to the way in which a SME would (Sharp & Potts, 2011). 

 

We used this knowledge capture methodology specifically on Anti-Submarine Warfare Evaluator (ASWE) 

instructors to extract knowledge about how they operate as observer/controllers during training events. This 

knowledge was used to construct the VOCAT training task blocks and student cognitive process models described 

later in this paper. 

 

Behavior Modeling Approach 
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We have employed a modeling approach which represents knowledge captured from Subject Matter Experts (SMEs) 

in a language called Task-Method Knowledge (TMK). 

Our entire VOCAT system, including the VOCAT 

model, training task blocks, and student cognitive 

process models, have been constructed in TMK. TMK 

models provide a mechanism by which a set of process 

models is created and stored from the outset. Process 

models are represented as task decomposition 

hierarchies made up of three types of elements shown in 

Fig. 1: tasks, methods, and procedures.  

 

Tasks represent particular actions to be completed and 

are depicted in TMK models as yellow rectangles. 

These tasks decompose into method child elements, 

depicted as blue ovals, and/or procedure child elements, 

depicted as yellow rectangles with black stripes. These 

two child elements represent alternative options for 

accomplishing the parent task (Potts et al., 2010).  

 

Authoring Console and NTA Blocks 

 

On previous projects, we have developed domain-specific authoring consoles to allow instructors and SMEs the 

ability to author custom behavior models specific to their training. For this research effort, we leveraged this 

previous work to construct an authoring console for VOCAT models that gives instructors the ability to build 

models specific to the set of training objectives at hand, as shown in Fig. 2.  

 

 
 

Figure 1. Example TMK Model 

Figure 2. VOCAT Authoring Console 
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We used Navy Training Task (NTA) blocks to represent these training objectives. Table 1 shows training objective 

descriptions for a sample of NTAs. Each NTA block encapsulates a particular training objective. For example, NTA 

block 2.1.1 monitors the student's ability to effectively use his available sensors upon initial detection of a 

subsurface contact in order to establish confidence level and classification.  

 

Table 1. Example NTAs with Training Objective Descriptions 

 

NTA Number NTA Name Training Objective 

Description 

NTA 1.2.1 Water Space Management Tests how quickly students 

establish a No Attack Zone 

NTA 2.1.1 Collect Target Information Tests students' use of available 

sensors upon initial detection 

of a subsurface contact to 

establish confidence level and 

classification 

NTA 5.1.1 Display Tactical Picture Tests students' use of displayed 

tactical picture to maintain 

situation awareness 

NTA 6.1.1 Protection of Naval Forces Tests students' utilization of 

appropriate defensive 

formations, screens, and 

maneuvers 

 

During authoring, the instructor selects any combination of NTA blocks to be added to the VOCAT model. The 

authoring console uses the model template described in the next section to construct a fully executable VOCAT 

model. The selected NTA blocks execute concurrently while the VOCAT model is running during training. The 

VOCAT model assists the instructor by monitoring student performance and intervening in training as necessary, 

ensuring that the training session covers all of the training objectives encapsulated within the selected NTA blocks.  

 

 

VOCAT MODEL ARCHITECTURE 

 

High-Level View 

 

All authored VOCAT models consist of two simultaneously executing branches at the top level, shown in Fig. 3.  

 

 
 

Figure 3. High-Level View of VOCAT Model 
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The first branch, 'Gather and Display Scenario Data', receives and comprehends input from the instructor and the 

training environment, performing situation awareness processing. The second branch, 'Execute NTA Blocks', 

contains the NTA building blocks and filters information from the first branch with regard to the training objectives. 

 

Situation Awareness Processing 

 

The 'Gather and Display Scenario Data' branch provides the VOCAT model with situation awareness (SA) level one 

perception data as described by Endsley (1995).  The SA of the VOCAT model is similar to the SA of an instructor 

monitoring a training event. The branch begins to build its SA by gathering key information about the student and 

the scenario from the interfaces shown in Fig. 4 and Fig. 5.  

 

 
 

Figure 4. Student Information Input Screen 
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This information represents the a priori knowledge of the instructor when running a training event. While the 

training scenario is running, the branch continues to update its situation awareness by monitoring all entities in the 

simulation and gathering data necessary for an AAR. Such data may include entity positions and their relative 

distances, elapsed time, and student sensor use.  

 

NTA Block Execution 

 

The second branch, the NTA branch ('Monitor Training Objectives') monitors student actions with regard to the 

NTA blocks selected for the training exercise. When particular student actions are observed, the VOCAT model will 

reflect on the appropriate student model to infer why the student performed the action and then determine the best 

course of action for instruction.   

 

 

REFLECTION ON STUDENT-SPECIFIC COGNITIVE PROCESS MODELS 

 

Generating Student-Specific Cognitive Process Models 

 

The first input screen presents the instructor with the opportunity to enter information specific to the student 

performing the training. While some tutoring systems classify students into general categories ranging from novice 

to expert, SME knowledge indicates that instructors adapt training based on expertise across different categories. For 

ASWE training in particular, instructors consider students' knowledge of SONAR, weapons usage, and adversary 

tactics. VOCAT gathers input from the instructor for these categories in order to select the appropriate student 

cognitive process model. The selected cognitive process model is a representation of the instructor's knowledge of 

the student's decision making process for the training objectives encapsulated within the chosen NTA blocks. 

 

We used the knowledge capture methodology previously described on ASWE SMEs to derive the information 

necessary to construct these student cognitive process models. We constructed student cognitive process models at 

varying proficiency levels for each NTA block. Fig. 6 shows two possible cognitive process models that may be 

selected based on instructor input for NTA block 2.1.1, "Collect Target Information."  

Figure 5. Scenario Information Input Screen 
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Figure 6. Novice and Expert Student Cognitive Process Models 

Note that we use TMK to represent this cognitive process of the student. The novice model is selected when the 

instructor selects the lowest level of expertise for each category. Conversely, the expert model is selected when the 
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instructor selects the highest level of expertise for each category. Models representing intermediate levels of 

expertise are selected for students with varying levels of expertise across the different categories. As shown in Fig. 

6, the expert model is more ablated than the novice model, representing the more complex decision making process 

that experts use compared to novices. 

 

Reflection on Cognitive Process Models during Training 

 

The ability to infer the student's reasoning is achieved through use of a critic model built into the VOCAT model. A 

critic model is a TMK hierarchy that uses DMI's reflection technology to understand or reflect on a representation of 

the student's decision making process, what we call the student cognitive process model. Through our knowledge 

capture process, we have identified student actions that would be of notable concern to instructors during various 

training objectives ("trigger actions"). These trigger actions prompt the critic model to reflect on the selected student 

model and search for the task which matches the observed student action. Once this task has been found in the 

cognitive process model, the critic model references its parent task to infer why the action was initiated. This works 

because, as in a typical task decomposition, the lower-level child elements in our TMK models are the set of actions 

performed to achieve the higher-level parent tasks. Conversely, the higher-level parent tasks describe why subtasks 

are being performed at a lower level.  

 

Fig. 6 shows the student cognitive process models with the task containing the trigger action of "Turn Away from 

the AOP (Area of Probability)" and parent task circled in both models. The reason VOCAT would infer for this 

trigger action would depend on which cognitive process model was selected for the student. If the novice cognitive 

process model were selected, VOCAT would infer the reason the student turned his ship would be to move to a new 

AOP. On the other hand, if the expert cognitive process model were selected, VOCAT would infer the student was 

turning away from the AOP to optimize use of a towed array. 

 

VOCAT Intervention during Training 

 

VOCAT displays messages to alert the instructor when 

the student performs trigger actions. An example can 

be seen in Fig. 7. Additionally, if reflection on the 

student cognitive process model deems that the student 

needs help completing an NTA objective, VOCAT 

adapts the training scenario in real time in order to help 

the student, just as an instructor would.  

 

We have identified effective ways for the VOCAT 

system to intervene during various situations from 

knowledge capture sessions with SMEs. In the previous example of the student turning away from the AOP, 

VOCAT would intervene if the reason the student turned away was to move to a new AOP but not if the reason was 

to optimize the use of the towed array.  

 

In addition to intervening when a student performs a trigger action, VOCAT alerts the instructor and intervenes 

during training based on general scenario information, as seen in Fig. 8. For example, if the student is in the process 

of completing NTA 2.1.1, "Collect Target Information", half the training scenario time has elapsed and the student 

has yet to make contact on the sub, VOCAT tells the sub to ping in order to help the student find it. If an even 

smaller percentage of time is remaining, VOCAT tells the sub to fire a torpedo to further help the student find the 

sub.  

 

Figure 7. Alert Message to Instructor 
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Figure 8. VOCAT Actions Screen 

VOCAT intervenes differently depending on the objective the student is trying to complete. For other NTAs, such as 

NTA 1.2.1, "Water Space Management", VOCAT could direct the sub to create situations where the student must 

maneuver the force in order to avoid conflicts in the area.  For NTAs regarding tactical oceanographic analysis, 

VOCAT uses the knowledge of active and passive ranges of the day to move the sub in or out of range.   

 

 

DISCUSSION OF TECHNICAL FEASIBILITY  

 

Anti-Submarine Warfare (ASW) Synthetic Training Event Test 

 

We constructed a synthetic scenario, similar to training 

event scenarios we have observed at the Fleet ASW 

Training Center, San Diego, with the purpose of testing 

the technical merit of the VOCAT system. We began 

by using the authoring console to construct a VOCAT 

model containing NTA block 2.1.1, "Collect Target 

Information." Our synthetic scenario, constructed in 

Joint Semi-Automated Forces (JSAF),  contains a 

student ship, enemy submarine, and high value unit 

(HVU), as shown in Fig. 9. The submarine was 

assigned the JSAF behavior of moving on a heading 

away from the student. We manually controlled the student ship and had the HVU moving with the student. We 

played the role of the instructor, entering input into the student and scenario information screens. We selected novice 

inputs for each of the student input categories and ran the scenario for ten minutes. We ran the scenario for ten 

minutes for demonstration purposes although a real training event would be on the order of 60 minutes.  

 

After 50% of the scenario run time had elapsed, we had yet to localize the sub. We saw that the instructor had been 

updated with the action VOCAT was performing in order to help the student, which was having the sub ping to help 

the student find the sub. After 80% of the scenario run time had elapsed, we saw that the instructor had been alerted 

that the student had not yet found the sub and that VOCAT had told the sub to fire a torpedo to help the student find 

it. In the remaining few minutes of the scenario, we turned the student ship away from the sub. VOCAT successfully 

alerted us to this action and turned the sub in the direction of the student to further help the student find the sub. 

 

After 100% of the scenario had elapsed, VOCAT ended the training scenario and created a file containing key 

information from the training scenario, shown in Fig. 10. This report contained accurate distance measurements 

from the student ship to the sub throughout the training scenario, which is information that SMEs have identified as 

key to ASWE instructors. VOCAT also documented the closest distance the student got to the sub along with the 

time at which it occurred. In addition, it documented the trigger action performed by the student, the reason for the 

action, and the time at which it occurred. 

Figure 9. JSAF Training Scenario 
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Figure 10. AAR Data 

Our ASW synthetic training event test has demonstrated that the VOCAT system is able to run end-to-end and is 

thus feasible from a technical standpoint. In addition, our test identified three ways in which the VOCAT system has 

demonstrated the potential to successfully aid instructors and enhance adaptive training. In the synthetic training 

event test, VOCAT first aided the instructor by focusing the instructor's attention on key information, including 

entity positions, student sensor usage, and elapsed time, in real time. Second, VOCAT selected the correct student 

cognitive process model based on instructor input and reflected on it in order to determine how and when to 

intervene during training, freeing the instructor from having to do so. Third, it saved key information from the 

training session, including relevant entity distances, trigger actions, and the inferred reasons behind the actions to aid 

the instructor during AAR.   

 

Addressing Current Intelligent Tutoring System Criticisms 

 

In addition to building a system that enhances adaptive training and aids instructors during training, we aimed to 

bridge the gap between traditional intelligent tutoring systems and one-on-one instructor-led training by addressing 

two criticisms intelligent tutoring systems commonly face.  

 

The first criticism is the failure of many intelligent tutoring systems to ask students why they perform certain actions 

during training. Without knowledge of the reasons behind these actions, it is difficult for tutoring systems to 

determine how and when to offer instruction (Jonassen, 1995). We addressed this limitation by creating student 

cognitive process models for VOCAT to reflect on during training, as previously described. Knowing why students 

performed trigger actions helps VOCAT to intervene effectively. It is important to note that the student cognitive 

process models represent instructors' knowledge of the decision-making reasoning of their students. Therefore, it is 

possible that there are discrepancies between the reasoning represented in the cognitive process models and the 

actual reasoning behind the students' actions (i.e. VOCAT does not surpass the effectiveness of one-on-one 

instructor-led training). However, as previously described, all trigger actions and decision points from training 

sessions are documented in the AAR created after the training session ends. This provides instructors the ability to 

review key decision points with students and ask the right questions. 

 

The second criticism is the immediate feedback offered by many intelligent tutoring systems before students have 

the time to work through challenges on their own. Often times, when feedback is immediately offered during 

training, students immediately turn to the help before trying to solve problems or complete tasks. Thus, this style of 

instruction is criticized for its failure to develop deep learning in students (Koedinger & Aleven, 2007). Unlike these 
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systems, VOCAT does not immediately intervene during training. Rather, as previously described, it intervenes only 

after it determines that students need help or after certain percentages of time have elapsed, as suggested by SMEs. 

This ensures that students have had enough time to attempt to complete tasks independent of outside instruction. In 

addition, VOCAT does not attempt to complete tasks for students. Instead, it aims to provide just the right amount of 

help to allow students to finish tasks on their own.   

 

 

CONCLUSION 

 

In this paper, we have presented VOCAT, an adaptive, intelligent virtual observer controller built to aid instructors 

to help naval students meet training objectives. It does so by reflecting on student cognitive process models during 

training. During a training event, the VOCAT system is used by an instructor to monitor student progress, adapt the 

training scenario in real time, and collect data for use in an AAR. After training, the instructor can use the data 

collected by VOCAT in an AAR with the student. Our technical feasibility test has demonstrated that VOCAT is 

able to run end-to-end and has the potential to be of aid to instructors.  

 

We have visited Navy training facilities, witnessed several live training events, and discussed with ASWE 

instructors the potential of VOCAT to aid in ASWE training. Thus, the next phase of our work is to expand 

VOCAT's capability to run in real training scenarios. We plan to collect data that will provide us with a quantitative 

measure of the VOCAT system's effectiveness in aiding instructors during training. We also plan to test whether the 

use of VOCAT enhances adaptive training by comparing student performance during training with and without the 

use of VOCAT. Additionally, we plan to collect feedback from instructors and students on the usefulness of the data 

and student cognitive reasoning VOCAT provides in the AAR.  

 

Our work on VOCAT had also sets grounds for future work in the areas of adaptive, intelligent training and AAR. In 

particular, we are interested to see whether VOCAT's use as a training aid will reduce instructor-to-instructor 

variation in training, and consequently, student learning. In addition, we are interested in allowing instructors to 

author their own NTA blocks and use their own expertise to determine how VOCAT should intervene during 

training. Finally, while our work so far has focused on ASWE training, we are eager to expand our efforts to 

enhance training across the Defense sector. We look forward to working with others in the training and simulation 

community to further advance these areas. 
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