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ABSTRACT 

 

Every systems engineer knows about the six interrogatives: who, what, where, when, how, why. Engineers and 

technical managers also know what knowledge about each system has to for each phase of its life cycle, and that in 

each phase multiple team members and stakeholders are involved. The likelihood for communication break-downs 

and misunderstandings is already great for just one system and increases manifold in complex systems that are part 

of a portfolio.  Semantic technologies allow for a more consistent approach to capture the expert knowledge 

associated with systems across their life cycles and provide an economical approach to enforce consistency and 

enable flexibility in domain specific engineering efforts. The key elements and enablers that ensure expert 

knowledge is captured and consistently composed and represented are ontologies, and rule sets, and reasoning logic.  

 

Ontologies have been identified as successful support to ensure semantic consistency. This paper evaluates what 

ontologies can do to successfully address the multi-dimensionality of complex systems engineering challenges and 

makes some recommendations how a general solution may look like. 

 

 

ABOUT THE AUTHORS 

 

   

Andreas Tolk is Chief Scientist at SimIS Inc. in Portsmouth, VA, and adjunct Professor of Engineering 

Management and Systems Engineering with a joint appointment to Modeling, Simulation, and Visualization 

Engineering at Old Dominion University in Norfolk, VA. He is author/editor of six textbooks and published more 

than 250 contributions in journals and peer reviewed proceedings. He holds a M.S. and Ph.D. in Computer Science 

from the University of the Federal Armed Forces in Munich, Germany. 

 

Joe Bricio is an Engineer at the Maritime and Joint Systems Department NSWC Dahlgren Division/NSWC Dam 

Neck.  He recently returned from Australia as an Exchange Engineer and Scientist Program assignment building 

ISO/IEC compliant life cycle engineering models for naval systems and now works with Navy International 

Program Office as the Cooperative Architecture, Technology and Resourcing Planning Manager.  Joe is integrating 

semantic technology to the International Multi-Dimensional Decision Analysis Tool that will help program 

managers conduct cooperative opportunity assessment prior to major program milestone decisions. He holds a M.S. 

in Modeling and Simulation from Old Dominion University and is pursuing his PhD in Systems Engineering/ 

Engineering Management from Old Dominion University.  

 

Matthew D. Haase is a Junior Systems Engineer at SimIS Inc. in Portsmouth, VA. He is completing his M.S. in 

Modeling and Simulation from Old Dominion University. He was previously employed as a Computer Scientist at 

Space and Naval Warfare Systems Center Atlantic in Charleston, SC. Mr. Haase holds a B.S. in Computer Science 

from Virginia Tech.   

 

 

 

 

mailto:andreas.tolk@simisinc.com
mailto:joebricio@gmail.com
mailto:mdhaase@gmail.com


 

 

 

MODSIM World 2015 

2015 Paper No. 54 Page 2 of 11 

Ontological Support to address the Multi-Dimensionality  

of Complex Systems Engineering Challenges 

 
Andreas Tolk, Matthew D. Haase 

 

Joe Bricio  

SimIS Inc. 

 

Engineer 

Portsmouth, VA 

 

Virginia Beach, VA 

andreas.tolk@simisinc.com joebricio@gmail.com 

mdhaase@gmail.com   

 

 

INTRODUCTION 

 

The globalization of product oriented engineering activities relies on geographically dispersed technical knowledge 

to coalesce under very competitive cost, schedule constraints is driving the global engineering and technical 

management communities to better capture and share domain specific yet context dependent knowledge.  In an 

interconnected fabric of user, regulatory, statutory requirements directly related to system performance, 

interoperability and utility the classical document based approach to both the engineering but also the compliance 

efforts is causing potentially unnecessary miscommunication and undue risks among all participants and stakeholder 

efforts across the system and software life cycles. The answer to these challenges has been to move away from the 

document based approach and introduce model based systems engineering (MBSE) as the supporting method, such 

as envisioned by Wymore (1993). MBSE is driven by the same rigorous systems engineering processes as have been 

used before. The main difference is that the common means of communication is a set of orchestrated models that 

allow various viewpoints on a consistent representation of the system under development. 

  

As it has always been the case, requirements are driving the system engineering phases: every major complex 

system development, from medical and healthcare systems, to personal communications and complex military real-

time safety critical software intensive systems need to deal with establishing balanced requirements that take into 

consideration costs over the system life, regulatory compliance with various domain specific governance bodies, and 

the competitive edge by providing the most utility value to the end users with enough flexibility and modularity to 

potentially unforeseen future modes of system employment. Furthermore it needs to be taken into account that 

changes in the global science, technology, research, development and engineering environment across many 

domains coupled with the need to achieve efficiencies in product conceptualization, development, manufacturing, 

sustainment and retirement become main drivers for achieving efficiencies in the way we capture and share the 

multi-faceted nature of system knowledge. In other words, our systems will be integrated into a broader set of 

portfolios then we ever envisioned before. How the systems will be used and with whom they have to interoperate 

with is often hardly perceivable when the systems engineering processes begin. 

 

This paper outlines key elements that address the ability of a large global engineering effort to achieve efficiencies 

and staying competitive by leveraging semantic technologies, augmenting the engineering effort with knowledge 

representation, and integrating regulatory compliance validation. Within the context of addressing system design 

robustness, Ross and Rhodes (2008) partially addresses the motivation to better characterize the multi-stakeholder 

knowledge. They recommend taxonomy based approaches to enabling system dialogue stakeholder on the system 

requirements and introduces the need to better structure multi-domain data and information to have the ability to 

have a more dynamic analysis of system robustness based on subject matter expert envisioned and anticipated future 

characterization. Their ideas can be generalized by using the whole ontological spectrum of semantic technologies to 

capture the various viewpoints in an orchestrated set of models. 

 

This paper builds upon this concept and discusses an approach to multi-stakeholder knowledge capture and 

representation that is semantically tied to multi-stakeholder analytical infrastructures mediated and integrated by 

semantic technologies and defined ontological structures.  
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UNDERSTANDING THE PROBLEM DOMAIN 

 

The Interim DoD Instruction 5000.02 (US DoD 2015) defines the Operation of the Defense Acquisition System. It 

states that acquisition, requirements, and budgeting, are closely related and must operate simultaneously with full 

cooperation and in close coordination. Validated “Capability Requirements” provide the basis for defining the 

products that will be acquired through the acquisition system and the budgeting process determines Department 

priorities and resource allocations and provides the funds necessary to execute planned programs. Throughout a 

product’s life cycle, adjustments may have to be made to keep the three processes aligned. Capability Requirements 

may have to be adjusted to conform to technical and fiscal reality. Acquisition programs may have to adjust to 

changing requirements and funding availability. Budgeted funds may have to be adjusted to make programs 

executable or to adapt to evolving validated Capability Requirements and priorities. Stable Capability Requirements 

and funding are important to successful program execution. Those responsible for the three processes at the DoD 

level and within the DoD Components must work closely together to adapt to changing circumstances as needed, 

and to identify and resolve issues as early as possible. This observation clearly points towards a continuous 

assessment of cost and technology to ensure that the warfighters need are met. Therefore, all activities defined and 

documented in the instruction shall ensure that solutions are provided that improve the capabilities of the warfighter 

within the given budget constraints. Tracing the effects of decisions (a) on costs and technology for each system 

over the entire life cycle, as well as (b) for the portfolio the system contributes to, is pivotal when trying to reach an 

optimal solution. The capability requirements process ensures that validate requirements that are reflecting the 

current needs of the warfighter are building the foundation for all decisions. 

 

The capability requirements process starts with the material development decision based on the initial capabilities 

document (or an equivalent document). In the material solution phase, a draft capability development document is 

produced that leads into milestone A. The technology maturation and risk reduction phase produces the capability 

development document, which is the basis for the authorities to release requests for proposals and reaches milestone 

B. In the following engineering and manufacturing development phase the capability production document leads 

into milestone C, which marks the beginning of the production and deployment phase, which is followed by 

operations and support phases and ultimately the disposal of the system at the end of its life cycle. As explicitly 

captured in the Interim DoD Instruction 5000.02, capability requirements are not expected to be static during the 

product life cycle. As knowledge and circumstances change, consideration of adjustments or changes may be 

requested by acquisition, budgeting, or requirements officials. Changing of requirements needs to be accompanied 

by assessing cost and technology in the light of these changes. 

 

While the capability requirements process is pretty uniform, the defense acquisition process is defined with the help 

of four different models and two hybrids. Model 1 deals with hardware intensive programs, model 2 with defense 

unique software intensive programs, model 3 describes incrementally fielded software intensive programs, and 

model 4 describes the accelerated acquisition program. The two hybrids focus on hardware dominant program types 

(hybrid program A) and software dominant program types (hybrid program B). Although the models and hybrids 

differ in detail, they all support the main phases known from the descriptions above. The material development 

decision starts the material solution analysis that leads to milestone A. The following phase is the technology 

maturation and risk reduction which leads to milestone B. If there are concurrent or competing technologies this 

phase prepares the decision which way to go. Engineering and manufacturing development leads to milestone C, 

which initiates the production and deployment phase. This phase is normally started with some low-rate initial 

production to support operational testing and evaluation to ensure the initial operational capability. If this is 

successful, the full operational capability is produced and the system is sustained and eventually disposed. In 

particular for the milestones it is pivotal to critically reflect cost and technology in the light of the accomplished 

results and the updated requirements. The enclosures provide more detail on these and additional decision points. 

 

In this domain of major complex system development, managing the inherent communication challenges that are the 

subject of typical systems engineering practices is complicated by the structural, spatial, organizational, and 

temporal separations between teams, team members, and life cycle phases. The potential for miscommunication 

threatens the understandability and repeatability of the life cycle processes, as differently-tailored processes and 

terms are harmonized on an ad-hoc basis to the extent they are harmonized at all. Further challenges arise during 

iterations of the system design in ensuring that stakeholders affected by changes are informed and understand the 

import of the changes proposed. The international standard ISO/IEC IEEE 15288 addresses the system life cycle 

processes. On the organization level, project enabling processes are needed for the life cycle model management, 
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infrastructure management, project portfolio management, human resource management, and quality management. 

On this level are also agreements made regarding the acquisition of needed elements as well as the supply chain to 

and from other organization. These organization wide processes are the foundation for project specific processes that 

coordinate project planning and project assessment and control, supported by decision management, risk 

management, configuration management, information management, and agreements on measurements and metrics 

processes. Within this framework, the technical engineering processes can be conducted to successfully design, 

develop, use, and retire a system. These technical processes define stakeholder requirements definition, requirement 

analysis, architectural design, implementation, integration, verification, transition, validation, operation, 

maintenance, and disposal. In each of these 25 life cycle processes, team members of various domains, military 

commands, and stakeholders are working on their particular tasks. For software intensive systems, the ISO/IEC 

IEEE 12207 defines the same 25 life cycle processes and adds additional six software implementation processes, 

eight software support services, and three software reuse service to the mix. 

 

 
Figure 1: System Life Cycle Processes defined in the IEEE/ISO/IEC 15288 

While the software engineering processes clearly articulate the need for the orchestration of all efforts, the 

traditional document centric approach is insufficient. Even with optimal governance of all processes it is unlikely 

that all documents, manuals, and technical descriptions always directly represent the current status of the system, its 

components, or its environment. As an answer to this problem, model based systems engineering (MBSE) was 

proposed. The International Council on Systems Engineering (INCOSE) defines MBSE as “the formalized 

application of modeling to support system requirements, design, analysis, verification and validation, beginning in 

the conceptual design phase and continuing throughout development and later life cycle phases.” Driven by 

requirements, functional and behavioral models, performance models, structural and component models, as well as 

other engineering and analysis models are orchestrated based on a common system model that provides the common 

ground of the analysis of alternatives and solutions. For the full benefit, MBSE shall be applied across all phases of 

the system life cycle. In other words: instead of using documents to ensure a consistent view of the system under 

development, an orchestrated set of models is used. If to views share the same information element, an update of this 

element is immediately transparent to all other users of the element. Furthermore, if the change would trace the 

violation of a constraint in another domain, the author of this change can be informed about this violation, and the 

change may eventually be forbidden. Also, if requirements are changing, the set of models allow to trace which 

constraints and solutions are affected by such a change. Overall, experts have the chance to better understand the 

consequences of their decisions not only in their domains, but also in the many domains that are influenced by the 

work in other teams, or even in other life cycle phases of the system. 
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Only in few and trivial projects, the underlying model will be a single structure. As discussed above, we will have 

many experts from various domains and different background contributing to the development of a system. In 

addition, the system is likely part of a portfolio that comprises additional systems that by themselves are still under 

development. If the procurement is conducted by multiple nations, more challenges have to be addressed. It is 

therefore highly likely that a significant amount information and knowledge is captured in a multitude of models that 

are not necessarily interoperable with each other. Semantic technologies in general, and in particular ontologies, 

rules and reasoning logic, offer solutions to these challenges. 

 

WHY SEMANTIC TECHNOLOGIES? 

 

Semantics is part of the semiotic triad made up of syntax, semantics, and pragmatics. Syntax is focusing on the 

structure of information, semantics deals with the meaning, and pragmatics with its application and use. Semantic 

technologies are therefore concerned with ensuring that information is consistently interpreted among different and 

distributed applications. Semantic technologies became well known by the development activities on the Internet to 

establish a semantic web (Berners-Lee et al. 2001, Shadbolt et al. 2006). The semantic web stack identifies several 

layers of technologies and protocols that support the implementation of this vison. 

 

The set of standards allowed moving towards a new level of machine support and automatic reasoning in the recent 

years was never been possible before. In addition, the technologies are continuously further developed and 

exchanged within the semantic web community to foster agreement and improvement. 
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Figure 2: The Semantic Web Stack 

The basis for general communication in the web is the use of a machine and vendor independent codification 

allowing the interpretation of signals as symbols. This is supported by the use of UNICODE as the lowest building 

block. The second foundational leg is the use of Uniform Resource Identifiers (URI). Everything on the web 

becomes a resource and can be addressed as such in a standardized way. The Extensible Markup Language (XML) 

provides the elementary syntax for resources, which means allows communicating structure within a resource that 

can be search for, extracted, etc. It is possible to provide and restrict the structure and content of elements through 

the use of an XML Schema. Another approach that is seemingly gaining more and more support is Turtle, which is 

XML independent, providing an alternative. The Resource Description Framework (RDF) allows to structure 

resources and their relations similar to using a data model. Most of these frameworks use XML, but that is no longer 

necessary, as alternative exist. However, whenever data need to be exchanged in a consistent way, which includes 
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the idea of transactions on one or several resources, support of a common RDF is needed. RDF organizes resources 

as triples, which provide the structure for higher operations. While RDF is more a data model, the use of an RDF 

Schema (RDFS) compares to the definition of a taxonomy of terms describing properties and classes of RDF 

resources. It allows building hierarchies and complex relationship using well-defining types of associations 

connecting well-defined structured tagged with common terms. While RDF works with general triples, RDFS 

standardizes the most important of these triples as recognized by the community. The Web Ontology Language 

(OWL) is an extension of RDFS. It adds more standardized terms describing resources, properties, and relations, 

such as cardinality, equality, typing, enumerations, and more. OWL allows reasoning over these extensions, if all 

supporting resources follow the standard accordingly. 

 

Queries about resources do not require that the resources are documented in RDFS and OWL. The 

SPARQL Protocol and RDF Query Language (SPARQL) allows searching for triples, conjunctions of 

triples, disjunctions of triples, and optional patterns. As such, SPARQL works with RDF, RDFS, and OWL. The 

Rule Interchange Format (RIF) is not yet standardized, but only recommended. It allows the communication of 

constraints within the semantic web stack to ensure consistency between the layers. An alternative for OWL based 

resources is the Semantic Web Rule Language (SWRL) that utilizes description logic subsets of OWL. 

 

The use of OWL should not be decided without proper consideration of the issues of decidability and computational 

complexity. Not all dialects of OWL are decidable, and even if they are decidable, their application can lead to non-

polynomial computing time. Within our projects, we were focusing on OWL-DL, which is decidable, with particular 

interest in the profiles defined for OWL 2: OWL 2 EL, OWL 2 QL, and OWL 2 RL. A good review of available 

semantic web tools and standards and their computational constraints is given by Hitzler et al. (2009). The reason 

why OWL is our recommendation for MBSE becomes obvious when we evaluate the ontological spectrum, as it was 

published by Daconta et al. (2003): OWL is more expressive than most alternative methods that are used to design 

and develop models while it remains decidable by a machine. As such, it has the potential to become the Lingua 

Franca for the description of models and allows to apply computational logic to reason over such models. The 

following figure shows the ontological spectrum using examples of currently applied web methods. 

 

 
Figure 3: The Ontological Spectrum 

Practically, OWL allows to describe every model defined in every modeling language and method that is on the 

same or on a lower level within the ontological spectrum. This includes technical manuals and specifications, 

artefacts captured within the DoD Architecture Framework, or model description based on the Unified Modeling 

Language (UML). It is also applicable to data models, interface specifications, and so forth. In other words: OWL 

becomes the common language that allows to describe and express all models that are part of the orchestrated sets of 

models needed for MBSE. Once all models are captured in OWL, and once all concepts in all participating models 

are expressed using a common controlled vocabulary, the full power of an ontological description can be applied. 
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The definition of the controlled vocabulary is a problem on its own and deserves a complete research project to cope 

with this in detail, but it can easily be recommended to start with the IEEE/ISO/IEC 24765, which defines the 

vocabulary to be used for systems and software engineering standards, as well as terms defined within the National 

Information Exchange Model (NIEM), that addresses multiple application domains of interest. 

 

One possible use case is to identify any inconsistencies between the models, or even within one model, simply based 

on logical descriptions that are machine readable: OWL can identify logical inconsistencies by using logical 

reasoners checking the knowledge based provided by the ontological representation of the set of tools. If one tools 

contains the logical fact that a system specification is within a desired cost frame why another tools contains the fact 

that this is not the case, the reasoner presents this inconsistency to the users to come up with a solution. Another use 

case is to compare to what degree two processes are isomorph, or at least if they can be mapped to each other. An 

example is to let a reasoner find out which life cycle processes conducted following the Interim DoD Instruction 

5000.02 are supported by processes defined in the ISO/IEC IEEE 15288. A simpler use case is to check if all 

required data for a certain process has either been provided by another subject matter experts in another team or 

domain, or if it will be produced by another process, or if the data are not yet defined. 

 

The following section gives some examples derived from an ontology project conducted for our customer that 

proved the feasibility of such conceptual ideas. 

 

APPLICATION EXAMPLES 

 

As part of an effort supporting our customer, we ontologized a procurement support and analysis tool under 

development to support systems acquisitions. The goals of the effort consisted of first, establishing a formal, 

structured understanding of the system in its current state, including the necessary inputs, outputs, and resources in 

order for it to be employed; and second, identifying gaps and opportunities where the system could be integrated 

with other model based system engineering applications in the acquisition portfolio. 

 

As our customer was from the defense domain, we chose to employ the Department of Defense Architectural 

Framework (DoDAF) Meta Model (DM2) as the upper ontology for the domain ontology, which consisted of three 

parts: a data ontology, a functional flow ontology, and a software architecture ontology. The data ontology described 

the format and part-whole relations of the explicitly defined input data structures. It also captured data structures that 

were either not mentioned or not fully described in the system documentation, but whose existence and necessity 

could be inferred from the operation of a whole. The functional flow ontology captured the activities performed by 

the system from an operator-level perspective.  It leveraged the constructs of the data ontology to describe inputs 

and outputs of the activities. It also linked activity performers (namely, personnel) with the activities they support. 

The system architecture ontology described the topology of the system from a system- and service-level perspective. 

It mapped resource flows (including the data structures described in the data ontology) between systems, services, 

and users and documented the standards to which the system must conform. Figure 4 illustrates the relationships 

between the four ontologies. 

 

 

Figure 4: Upper and Domain Ontology Relationships 

Uschold & Gruninger (1996) suggested that ontologies could be applied in Systems Engineering in support of 

specification, reliability, and reusability. Regarding specification, they argued that ontologies could be used 
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informally for requirements gathering and system conception followed by formally for capturing a software system 

specification. They listed the applications supporting reliability as consistency checking, i.e. comparing a system 

design to an ontologized specification, and capturing and tracing assumptions on which various components rely. 

Similarly, by explicitly capturing assumptions inherent to previously encountered problem domains, they argued that 

ontologies can support the decision on when an existing tool or solution can be applied to a new domain, and what 

modifications would be necessary for a successful integration. We share their views and extend this list to include 

employing ontologies to allow users to understand the pre-conditions that are necessary to employ an existing 

system. In the following sections we discuss the areas where we applied the developed ontologies, along with areas 

where we see potential for future applications. We conclude with lessons learned during the project. 

 

Ontological Applications 

 

Verification of System Consistency 

The first application of the ontologies was verifying that the system design, as captured in the ontologies, was 

internally consistent. This was accomplished automatically upon enabling a reasoner on the completed ontological 

structure, as any inconsistencies would have been immediately flagged as errors. 

 

We did not expect to find any inconsistencies, as the model referent was an already existing, functional system – 

presumably, any inconsistencies would have prevented its operation. However, the consistent ontological 

representation provides formal evidence that the design is appropriate in theory as well as practice, as well as 

establishing a consistent foundation for later system extensions. However, we could use the ontological 

representations of DoDI 5000.02 and ISO/IEC IEEE 15288 to evaluate which phases are supported. 

 

Identification of Task Connections 

The second application was to derive the preconditions that enable the system to be used, especially those related to 

the performers that are required for an activity, with the goal of allowing operators and prospective operators to 

identify the data and support team they would need in order to employ the system for certain activities. We found in 

course of ontologizing the system that the system documentation often contained non-explicitly declared 

assumptions about the state of the system prior to use. Using the ontologies enabled these implications to be made 

explicit. For example, certain system activities require custom models to be created in order to perform analysis. 

These models must then be converted into executable models using a scripting language and then loaded into the 

system. The user documentation assumes the existence of these models and doesn’t mention the need for an 

experienced modeling support team to create them. Without these models, only parts of the functionality can be 

provided. The ontologies were able to document this requirement, and include it in the requirements for not only the 

activity in question, but for all the activities that follow the initial activity. 

 

Future Applications 

 

The following use cases are planned applications identified in expert discussions in preparation of the project, where 

we believe the ontologies will provide significant value when employed under the given conditions. 

 

Identification of Applicable Standards and Tools 

This application involves using the ontologies to derive standards, systems, and structures that are appropriate for 

particular system activities and tasks. As the system referent evolves and its applications change, new desired 

capabilities are captured and added to the ontologies. This allows system engineers to determine whether existing 

structures within the system can satisfy the input and output requirements and conform to constraining standards, 

saving time and money. 

 

Ontology-Driven Engineering 

It is likely that new capabilities introduce new functionality that cannot be provided by the existing system tools. 

This application is the complement of the above application – instead of identifying the right tool for a process, we 

use the ontology to identify steps in the process that currently are not supported by a tool. The ontology allows a 

team to derive what an appropriate tool or system would need to accomplish to fill the gap – the inputs it must 

consume, the outputs it produces, and the applicable controlling standards. In other words, we use the ontology to 

identify gaps as well as enumerate the already known requirements for the tool. Lin & Harding (2007) already 

demonstrated that this idea is feasible for systems engineering projects. 
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Model Interoperability 

Finally, the ontologies will be leveraged to support system interoperability with other modeling tools. Each tool 

contains its own modeling conceptualization. In order to be a valid integration, these conceptualizations must be 

shown to be compatible; or, if they are incompatible, the conceptualizations must be harmonized. Ontologies can 

capture these conceptualizations in a formal way, and as previously described, they can also be reasoned over to 

provide strong evidence that conceptualizations are indeed compatible, as envisioned by Tolk and Miller (2011). 

 

Lessons Learned 

 

Despite their capabilities, semantic technologies are not panaceas. In order to be effective, they must be employed 

carefully. In this subsection we discuss some lessons learned from previous experiences employing semantic 

technologies. 

 

Expectation Management and User Education 

Because of the relative novelty of using semantic technologies in systems engineering, a key task of the engineering 

team must be educating clients about both the potential and limitations of these technologies. Many potential users 

are unaware of ontologies and how they can be employed. The engineering team must balance the explanatory 

power provided by the ontology with that required to describe it to customers and enable its utilization by clients. 

 

Despite a vibrant and growing online community of practitioners, ontology authoring tools, such as Stanford’s 

Protégé (Noy et al. 2001), are still maturing and require a significant amount of technical sophistication to employ 

properly. Authors and users must “get into the guts” of the ontology in order to formulate non-trivial queries, and the 

terminology and functionality is often presented in a way that can cause confusion for users not already immersed in 

ontological concepts. As ontology authoring tools mature, some of these usability issues will disappear, but today 

they remain a significant barrier to entry. 

 

Beyond the issue of usability of tools, the act of authoring ontologies is a sophisticated engineering task. An 

ontology is not merely a dictionary of a controlled vocabulary (though it contains a controlled vocabulary) or a 

database that can be queried for information (though it will answer queries.) Rather, ontologies are powerful and 

complex modeling instruments. Depending on the audience and intended usage, a directly-accessible ontology  may 

not be the best tool to provide. In such cases, it may be better to leverage the ontology to generate the information, 

and then present it in a more appropriate form. 

 

Need for Multidimensional Ontological Representation 

Most people already know about the need for upper ontologies and a domain ontologies to express general terms and 

concepts, including the controlled vocabulary, as well as the details and specific of the application domain. Hofmann 

(2013) introduced an additional line of thought of interest, namely methodological ontologies (HOW we express 

something) and referential ontologies (WHAT we express). The leads to a matrix of ontologies needed to address 

the diversity of domains as well as methods used to describe them. For the practice this means that only because two 

groups use ontologies in OWL doesn’t mean that we can easily exchange information that makes sense. 

 

Logical Constraints 

The nature of logic introduces certain constraints on how ontologies may be employed. We found that the logical 

characteristics of classes impacted how we utilized the domain ontologies to identify task connections and had 

implications for how the ontologies must be constructed. Specifically, inverse relationships can not be automatically 

inferred between classes. Figure 5 illustrates an example scenario and explains why this is the case. 

 

This limitation naturally impacts the usefulness of a class-only ontology for discovering non-obvious task 

dependency chains and single points of failure. One possible solution would be to explicitly declare each inverse 

relationship when the primary relationship is added. However, this negates some of the labor-saving advantage of 

using a reasoner. It also introduces modeling errors in many (perhaps most) cases. To continue with the example 

given in Figure 5, it makes sense that all LoadBalancingSystemFunctions must be performed by some system 

component, else the function would not be a function. On the other hand, performing a 

LoadBalancingSystemFunction is not inherent to all TaskProcessors; perhaps some TaskProcessors perform 

other tasks or none at all. Declaring that all TaskProcessors perform some LoadBalancingSystemFunction would 

be inaccurate. 



 

 

 

MODSIM World 2015 

2015 Paper No. 54 Page 10 of 11 

Our proposed solution was to instantiate the ontology by creating individual members in each class, and then 

relating those instances to each other to capture individual characteristics. Among other things, this allows the 

reasoner to infer inverse relationships between individuals. However, in many cases instantiating an ontology entails 

essentially duplicating all the work done in capturing the class structure of the system. 

 

 
Figure 5: Class Limitations and Individuals 

Limits of Representation 

There exists a trade-off in ontological engineering between ontological expressiveness and computational 

decidability. In order to maintain decidability in polynomial time, ontological languages may impose limitations on 

the range of relationships that can be described between entities. This can result in perfectly reasonable and intuitive 

ontological constructs which nevertheless are not representable in a decidable form. For example, DM2 classifies 

things as either individuals, types (sets of individuals; classes), or tuples (ordered relationships.) This corresponds 

well with the OWL concepts of individuals, sets of individuals, and property assertions describing relationships 

between individuals and sets of individuals. However, DM2 allows tuples to contain other tuples within their tuple 

space (i.e., a relationship can relate two relationships, or a relationship to a class or individual.) This is disallowed in 

OWL; property assertions can only be made between individuals and classes. Certain other types of relationships are 

also disallowed in OWL – for example, a property that contains a transitive sub-property it not legal. 

 

These limitations have ramifications on the choice of upper ontologies. If an upper ontology is selected that cannot 

be represented in a decidable form, the modeler will need to either use a subset of the upper ontology when 

constructing the domain ontology, or will need to need to re-implement the upper ontology in a decidable way. 

Obviously, the latter choice is undesirable when attempting to maintain consistency across multiple ontological 

structures. 
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CONCLUDING REMARKS 

 

Ontologies have been proven to be a powerful tool to capture knowledge in machine readable form. They are 

expressive enough to describe the content of documentations and manuals, the structure of databases, and model 

descriptions using the Unified Modeling Language UML or the System Modeling Language SysML. They can 

utilize and express XML-based information, including the semantic technologies used on the Internet. As such, they 

are a strong candidate to become the common language to express knowledge between experts from all different 

team members and stake holders from all life cycle phases. This is true for the system under consideration as well as 

for all other systems that are part of the portfolio and all systems with which the system will interact. 

 

In order to apply ontologies, a highly educated workforce is needed. In ontology expressed in OWL is of little use to 

the user if he is not supported by a variety of tools that support the work with it. In particular good visualization 

tools are needed that display the information, in particular dependencies and other relations. The power of 

ontologies is furthermore to apply logical reasoners that can check the knowledge base for consistency and derive 

new information from the current descriptions. Again, the user needs guidance provided by suggestive interfaces 

helping to formulate the questions he is interested in. Despite improvements over the recent years, the user 

friendliness of OWL needs further improvement to make it acceptable and applicable in the broader context of 

systems engineering. 

 

In order to support MBSE on the broader level of system of systems engineering, where the individual systems are 

operational and managerial independent, geographically distributed, and are developed evolutionary (Maier 2015), 

the application of standards is highly important, but constraint by the lake of a common governance: a common 

standard for data, process, and constraint modeling and engineering will never be able to be enforced, which will 

also lead to differences in content and methodology. Ontologies can capture the content, the methodology, and 

provided a framework to evaluate if these different approaches and systems are compatible enough to work together. 

They provide the necessary transparency to allow for collaboration without giving the autonomy of the individual 

systems away, which is pivotal when systems have to work over the organizational or national borderlines. 
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