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ABSTRACT 

 

Consider a situation where multiple models are available to solve a certain modeling problem. Their performance 

varies on new data since they were developed based on different datasets by different modelers. One modeling 

approach is to select the most fitting model to some reference data through competition. Another approach, recently 

popular in challenges, is to combine the models into an ensemble model. Using combination, each model has a 

potential to influence the combined model and is superior to plain competition when possible since knowledge is 

accumulated rather than selected.  

 

There are several challenges in combination. One is determining the importance of each model. This challenge 

increases in difficulty where models are simulated using random methods such as Monte-Carlo. These simulations 

typically have accuracy related to time by square root order. So efficiency with respect to time and computing power 

required is a factor. 

 

This paper will discuss theoretical methods for combining models using very simple examples. Some 

implementations are discussed with reference to code examples. Advantages and drawbacks of the different 

techniques are discussed to allow modelers choose the preferred combination approach. Implications on accuracy 

and computing power and use of parallelization techniques are discussed. 

 

A disease modeling application using one of the techniques is briefly discussed.  
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INTRODUCTION  

 

The incentive for this work came from the disease modeling domain where different disease modelers try to predict disease 

progression through different models. Each of these models describes phenomena observed in different data sets that are 

typically disjoint since modeling teams rarely share their data. Even within the same dataset, there are sometimes multiple 

models describing the data in different points in time (Clarke and Gray 2004, Hayes and Leal 2013).  Assuming that each 

model faithfully described the data it models, models should be similar in performance in theory. However, in practice this is 

not the case. The Mount Hood challenge where diabetes modelers compare and contrast their models is an example showing 

how different models report different predictions on similar inputs (Palmer and the Mount Hood 5 Modeling Group 2013, 

The Mount Hood 4 Modeling Group 2007). 

 

The differences arise from several reasons including: 1) Models were initially constructed using different data sets. 2) 

Modelers taking different assumptions. 3) Even with similar data modelers rely on different aspects of data such as emphasis 

on treatments or inclusions of some biomarkers that other teams do not model. 4) Models have different structures such a 

Markov models or micro-simulation models which may add random noise.  

 

While the obvious scientific goal is to create a model that mechanistically explains multiple datasets simultaneously, this goal 

may not be attainable for some problems, or it might not be economically feasible to construct or analyze a solution.  There 

may be value in obtaining models that reproduce a system’s response to many different protocols without necessarily 

reflecting all of the underlying biochemistry or physiology. 

 

Considering those factors, decision makers face a difficult decision when choosing a model since they often view a model as 

a black box and are not aware of all the details modelers are aware of, just like customers are not always familiar with 

engineering work behind the product they buy in a retail shop. However, unlike retail products, it is possible to merge and 

unify models together to fit a specific modeling question. In fact this has been practiced in several modeling competitions. 

The Netflix challenge (Bell and Bennett 2009) is a famous example where models have been merged from several modeling 

teams to better predict movie preferences. Following that challenge it is quite common to merge modeling teams in other 

challenges. The Heritage Health Prize challenge (Heritage Health Prize web site n.d.) is another example where the challenge 

design has included the option of merging modeling teams in anticipation of models to be merged to better predict health 

outcomes. These are examples of challenges where the combination was of human teams, yet once model code exists, the 

process of combining models can be automated. Many times these are called Ensemble Models and are quite popular with 

implementations available for them in Machine learning libraries (Doig 2015). The idea of Ensemble models is not new, 

those have been actively and successfully used for weather forecast from the 90s (Ensemble forecasting Wiki), yet this idea 

has not been employed by other modeling fields, and is especially missing in the disease modeling field where models are 

still compared in competition rather than merged. 

 

A specific sub group of models of interest in this paper are statistical micro-simulation models that generate results using 

Monte Carlo micro-simulation. These models have recently gained popularity within disease modeling. In such a simulation 

random numbers are fed as inputs to determine model results and simulations are repeated many times to generate output. 

Those models take time to compute and include noise in their output. These elements make combinations harder. 

 

For the sake of simplicity this paper will consider models as assumptions coded as mathematical formulas and will follow a 

very simple example through various ways of combination. The methods to combine models will be studied for strengths and 
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weaknesses. At the end of the paper we will briefly discuss an implementation of the preferred method for disease modeling 

purposes. 

 

MODEL COMBINATION METHODS 

 

There are several combination methods depending on the data we have. We will separate linear model combination from 

aggregate model combination and provide different solution methods for both formulations. We will start with the very 

simple linear case. 

 

Very Simple Linear Model Combination 

 

Assume that a phenomenon observed is generated by a function:  . Our target in modeling is to deduce that function from 

observations. We typically have several observations:          at input points   .  

Let us assume that several modelers have provided models that mimic the behavior of     , let us denote those possible 

candidates as:      . Our goal is to find combination operators composed of parameters        such that when applied to 

      we imitate      as best we can. In other words our goal is to find    that minimizes the following fitness function: 

 

                                     
 

    (1) 

 

Where     is an unknown error associated with sampling      or simulating      . Note that there are no guarantees on the 

functions being mathematically nice and models are typically more complicated and may not even fit into this simplified 

notation. However, this simplified notation will help us proceed. And we will simplify this even further by giving a simple 

example using polynomial functions. 

Consider that                    generated a set of points    for different    values sampled randomly from the 

support domain     . Three modelers provided us with 3 base functions that model the same phenomenon.      =1 ; 

        ;         . Our goal is to find coefficients    such that the linear combination of base functions imitates the 

observations, i.e.                             . In this simple example the solution is obvious:           
           since those are the multipliers of the base functions that construct     .  

Note that   and   may well be vector valued, and that the function, inputs, and outputs may be underdetermined or 

overdetermined. 

In the above very simple solution we can resolve this problem using ordinary least squares regression.  

 

  

Solution by Regression/Least Squares 

 

The simplest and fastest solution for this problem would be solving an over constrained equations set. Here is the 

formulation: 

                                

                                
 

                                

 (2) 

On the left side the values        represents known coefficients of the matrix   - after evaluation. On the right side the values  

      are our ground truth we collect in vector  . The unknown coefficient vector           
   can be extracted by 

using the following expression: 

              (3) 

 

And although there are multiple ways to solve this over-constrained equation set, those methods are synonymous to linear 

regression and ordinary least squares.  

In this specific simple example using regression makes sense and is a generally good solution. Regression has the advantage 

of having been used extensively and has many implementations.  

However, it has drawbacks considering the larger picture:  

1) Regression will assume the problem is linear and finds a single solution whereas linearity is not guaranteed in the general 

case and multiple local minima are possible. Moreover it assumed that the transformation is linear like in our example 

whereas there can be more complicated transformations may exist. 
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2) Adding constraints to the problem is not trivial. For example demanding that the coefficients values would be positive and 

sum to 1 to indicate the sum of base models should stay is not trivial. 

However, this problem was too simplified compared to some population modeling problems and just a gateway towards a 

more complicated problem where we have aggregate solutions. 

 

Aggregate Model Combination  

 

In some cases, and specifically in population modeling such as disease modeling of clinical trials, our observations 

are aggregate. Meaning that for each point    we do not know      , instead we observe some statistics about those 

results           . The aggregation function   is typically some sort of statistical function such as mean, standard 

deviation or other statistics aggregating the observed individual sightings   . Therefore the ground truth we can rely 

on is the value of the aggregate function, e.g. the published observed outcome of the clinical trial cohort rather than 

the individual outcomes of each patient. 

Assuming that modelers provided us with good models that describe the same phenomena then we can still write a 

fitness function, although more complicated: 

                                                  
 

  (4) 

Let us write this problem using our polynomial example assuming that   is the mean and assuming number of 

samples is the same we get the following expression: 

                          
 

  (5) 

And therefore the entire fitness function while accumulating noise and accounting for linearity of the transformation 

would be: 

                                  
 

                         
 

     (6) 

Note, however, that we now have several solutions to the problem since multiple combinations of    exist that will 

minimize that expression. In fact any combination of     that falls on the hyperplane 

                   
 

                         
 

     will minimize the fitness function.  

And the true solution for the problem lies on this hyperplane. If we have additional constraints on    we can add 

them to reduce the solution space, yet any of these solutions will improve our fitness to the observed aggregate data. 

Recall that the assumption is that each one of the models    is considered to represent the phenomena we observe. 

Therefore a combination of those can be considered as a valid model under certain conditions. For example the 

average of results of two models seems a reasonable compromise. The formulation in this example is just a weighted 

average. And our goal here is to find weights that will improve fitness to other known aggregate data. Initially we 

care less if there are multiple solutions as long as we are getting closer to our absolute truth by improving the fitness. 

However, if we have a guess we want to end up relatively close to it and therefore an iterative optimization method 

would be preferred. 

 

 

Iterative Solution by Gradient Descent: 

 

We can use an iterative gradient method to find a solution for the model combination problem. Those are local 

optimization methods where the solution starts with a guess and then improved each step. This solution is built upon 

the assumption that even with the error, the fitness function gradient                can be computed for any given   . 

For illustration purposes think of the fitness function   as a topographic map where    represent a position on the 

map. The basic idea of the algorithm is to figure out the steepest slope at each point and take a step towards that 

direction. This is why the algorithm is sometimes referred to as steepest descent. Ideally we reach the bottom of the 

valley close to our starting guess.  

Formally the gradient descent algorithm is as follows: 

1. Start with initial guess    

2. Approximate the gradient                                                        where   represents 

the dimension of the gradient member and   represents the step size we are taking to approximate the 

derivative in that dimension and     is Kronecker delta. 

3. Take a step of size   towards the negative gradient direction,                        /                  

4. Loop back to step 2 unless the stop criteria is reached. 

For the gradient we can use the approximated gradient using first order forward derivative approximation will look 

like:  
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    (7) 

Note that the gradient components can be computed in parallel. This is especially important when considering 

models that compute for a long time and use High Performance Computing (HPC) elements. 

This algorithm is also suitable for non linear functions. Moreover it allows adding constraints such as bounds for    

in between algorithm steps as can be seen in the accompanying code (ModelCombiner on GitHub Online). 

However, this algorithm is not perfect for the following reasons: 

1. The algorithm is slower than the regression counterpart since it requires computation of each dimension 

during each step. 

2. It requires fiddling around with several parameters controlling step size and stopping criteria. These are not 

always easy to determine and it may slow down convergence. It is especially hard to determine when the 

fitness function has noise included since the noise may affect the gradient. There are variations and 

improvements to this basic gradient based algorithm that avoid such issues, yet they typically involve some 

sort of added computation. 

3. The algorithm is greedy and strives for local minima rather than computing the global optimum. Note that 

this can be seen as an advantage in some cases such as finding the best model combination closest to a 

certain model. 

Note, however, that other algorithms can optimize this aggregate model combination as explained hereafter. 

 

 

 

Solution by Evolutionary Computation: 

 

Evolutionary computation (DeJong and Spears 1993, Spears et al. 1993, Fogel 1994, Fogel 2000) has been shown to 

be a very effective stochastic optimization technique (Bäck et al. 1997, Michalewicz and Fogel 2004). Essentially, 

an evolutionary computation (EC) attempts to mimic the biological process of evolution to solve a given problem 

(DeJong 2006). 

Evolutionary computations operate on potential solutions to a given problem. These potential solutions are called 

individuals. The quality of a particular individual is referred to as its fitness, which is used as a measure of 

survivability (DeJong 2006). Most evolutionary computations maintain a set of individuals (referred to as a 

population). During each generation, or cycle, of the evolutionary computation, individuals from the population are 

selected for modification, modified in some way using evolutionary operators (typically some type of recombination 

and/or mutation) to produce new solutions, and then some set of existing solutions is allowed to continue to the next 

generation (Fogel 2000). Viewed in this way, evolutionary computation essentially performs a parallel, or beam, 

search across the landscape defined by the fitness measure (Russell and Norvig 2000, Spears et al. 1993). A beam 

search is simply a search algorithm that maintains k states, rather than just one state, at each iteration. 

EC algorithms are the most flexible and costly solution considering our aggregate model combination problem. This 

group of algorithms has powerful optimization capabilities that are generally unconstrained by mathematical 

niceness. The algorithms are heuristic in design and make very little assumptions on the problem at hand. EC 

includes many types of algorithms including evolutionary algorithms, genetic algorithms, and even simulated 

annealing. Those algorithms typically require: 

1. The definition of a fitness function – in our case we have                

2. Definition of variation function – similar to a step function yet can combine multiple solutions typically 

combining some random element. Variation can be defined in mutation where the solution changes itself, 

and, in some algorithms in the family, crossover can be defined where two solutions are merged.   

3. Definition of selection operator – to figure out which of the solutions is considered best 

4. Definition of a terminator – to figure out when to stop the algorithm 

The Inpyred library (Garrett 2015 software, Garrett 2016 software documentation) implements this family of 

algorithms and allows users to define the above elements along with other more advanced options. 

Those algorithms, can find a global minimum for the problem presented to them and they allow minimizing very 

complex functions where other methods may fail. More importantly they can potentially accommodate more 

advanced transformations that combine models. With such algorithms the transformation   can be much more than a 

linear combination with coefficients   . It is possible to choose a combination function that involves all sorts of 
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building blocks that can be combined together with the candidate models to form the combined function. Such an 

approach was executed in the past in (Schmidt and Lipson 2009). Model parameters that we denote as    as can be 

potentially used in the combination. For example a disease model that combines models that use the age parameter 

can potentially use age as a factor in the combining the different disease models using EC. 

 

Despite these potential capabilities, EC has drawbacks: 

1. They are much more time consuming than other solutions since they evaluate the functions many more 

times for many candidate solutions. This is significant if simulation takes a long time. 

2.  They typically rely on randomness, which makes figuring convergence harder 

Considering the simple aggregate model combination problem, these algorithms have little benefit especially since 

there are multiple solutions. However, these should not be dismissed due to their capability of handling very 

complex functions and model transformation. 

 

IMPLEMENTATION 

 

The three solution approaches were implemented considering the simple problem and aggregate model combination 

problem.  We provided source code for it so others can reproduce our results. The simple problem was chosen on 

purpose to be easy to follow. The source code is provided in (Barhak & Garrett 2016).  

The regression example solves the very simple linear problem combination while gradient descent and Simulated 

Annealing (SA) were used to solve the aggregate model combination problem. We chose SA to represent EC 

techniques since it is one of the simplest in this family. 

We added some noise to the system and randomly generated the individual sample points    to handle variations. 

 

Results and Analysis: 

Here are some outputs provided by the code. Basically we are trying to see how well solutions cope with this noise. 

Note that we are particularly interested in Monte Carlo noise that is reduced at the inverse square root of number of 

repetitions of simulation, so noise level is kept constant while running simulations with different number of sample 

points. We also tested the algorithm for two types of support: 1) fixed – where the set of sample points    is fixed 

and evenly spaced. 2) Random – where the points are fixed amongst all function evaluations yet are randomly 

spaced in the support interval. Figure 1 shows the sensitivity analysis of the simple model combination problem 

using regression while Figure 2 shows the sensitivity analysis of the aggregate model combination problem using 

gradient descent and EC. 

 

The sensitivity analysis clearly shows that Monte Carlo noise is significant in affecting results in all methods as 

expected. Some minor improvement may be noticed in some cases when population size increases. This may be 

attributed to the fact that Monte Carlo error diminishes in the inverse square root of number of samples. Random 

support seems to have a negative effect on gradient descent in some cases. However, the type of support seems to be 

less influential on the results with EC indicating that a nice distribution of the support vector of     does not have a 

significant advantage over a random sample in EC. This issue with gradient descent can disappear when repeating 

the same simulation again to reduce negative Monte Carlo error effects. This is also probably why EC optimization 

seems less sensitive to lower noise levels, simulations are repeated there many times already. If sufficient computing 

power is available users may wish to consider EC technique rather than the greedy gradient descent. Nevertheless, 

due to speed and due to the local greedy property we chose gradient descent for our application. 
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Figure 1. Simple problem solution with regression sensitivity analysis to change in support types (color), noise 

levels (marker size), and population sizes (x axis). 

 

 

 
 

Figure 2. Aggregate problem solution with gradient descent (left) and evolutionary computation (right).  

Sensitivity analysis to change in support types (color), noise levels (marker size), and population sizes (x axis). 

 

 

APPLICATION  

 

The motivation for this work started with a disease modeling application in mind. The Reference Model for Disease 

progression (Barhak2015a, Barhak 2015b, Barhak 2014, Barhak and Leff 2013) is a validation model composed of 

multiple modeling components and assumptions. It uses HPC to make models compete against published aggregate 

data available in the literature through clinical trial reports. So far the league of models approach was used. The 

fitness function was displayed like a score board of a league trying to figure out which model variation leads the 

league or behaves best for a certain population cohort. However, the number of components in the model grew to the 

point where computational power required for calculating all possible model combinations became unreasonable.  

Therefore in an attempt to reduce computation costs and increase accuracy, it was decided to merge models rather 

than make them compete by searching continuous parameter space of combinations. The Reference Model is more 

complicated than the examples provided previously. However, it does share the Monte Carlo component and based 

on aggregate data. The model combination implementation chosen was gradient descent.  

The gradient components are computed all in parallel using the same mechanism that allowed the models to compete 

as a league in the past using HPC. Nevertheless even with parallelization the computation time is long. It takes 

several minutes to calculate outcomes of one model variation per population cohort and currently the model consists 

of 96 population cohorts. Therefore parallelization is very helpful. However, the iterative nature of the optimization 
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algorithm requires repeating the computation in a manner than is not parallelizable. So assuming access to a large set 

of computers, each iteration will still take several minutes. However, with the 16 core cluster used for these results 

computation, each iteration took about a day and a half. The simulations were stopped after 10 iteration which were 

roughly two weeks on the calendar.  

The fitness of the best model and mean of fitness of all models in the iteration was recorded and the results show 

clear improvement as seen in figure 3. Note that the best model for each iteration was chosen from multiple 

scenarios calculated in parallel in each gradient descent iteration, each such parallel scenario includes the perturbed 

model to calculate gradient using finite differences. Since Monte Carlo variation adds noise, it is better to look at the 

mean model fitness for all models in the iteration as a measure of algorithm improvement. For example, fitness of 

the best model did not improve in iteration 3, however, the results indicate that there was improvement on average 

considering perturbation in all dimensions and all model variations calculated in parallel in that iteration. 

 

To reduce the effect of Monte Carlo error, some of the model simulations were repeated 25 times. The models 

chosen were the best model from each of the 10 iterations and the 10 best overall perturbations from the 

optimization run. The models were executed in two scenarios of population generation, with parameter correlation 

and without correlation. The results showed that all models selected were better that the original initial guess model. 

Fitness scores of these models are shown in figure 4. 

 

The Reference Model is constantly being improved by adding more knowledge and models to it. Future publications 

will discuss those results in details. Yet this new model combination capability is a significant change in the 

technology of the model. The Reference Model so far was able to answer the question: what is the best model from a 

given set of models and assumptions considering a certain query asked about given data. With the implementation of 

model combination, it is now possible to figure out how to better compose the best model to answer a query about 

clinical data composed of the building blocks given to it while those building blocks can include models and 

assumptions.  

 

 

 
Figure 3. Model fitness improvement per optimization iteration. Best model fitness and mean of model fitness 

of 92 model variations calculated in the same iterations are shown. 
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Figure 4. Model fitness for 19 best models selected from all optimizations after repeated 25 times to reduce 

Monte Carlo error compared to the initial guess model before optimization.  

 

 

CONCLUSIONS  

 

This paper discusses an approach to combine several models to improve results beyond the capability of each one 

model individually. It is aimed mainly at disease models where a lot of aggregate information from clinical studies is 

available yet such model combination technology is not in use. It was shown that both simple greedy gradient 

descent algorithm and more complex and time consuming evolutionary computation can theoretically improve 

models by combination.  

 

Gradient descent was used for combining multiple disease models to demonstrate initial feasibility of this technique. 

However, it is important to note that the results also show that optimization may fail in the aggregate case. In which 

case, this just means no improvement over a model combination we already are using. Therefore it is suggested to 

start optimization with an initial at a point where all models have some contribution to the combined model. In that 

case, no model will be excluded in case of optimization failure. Also, it is beneficial to run many simulations in 

parallel to try to reduce Monte-Carlo errors. When running many simulations in parallel it is also possible to use 

competition and combination in parallel to create an improved “assumption engine” that gains the best of all worlds 

and can handle situations where combining models is not straightforward. 

 

In any case, it is important to recall that with both competition and combination, model fitness depends on: 1) 

Query/Question asked, 2) Model assumptions, 3) Input data the model relies on. Nevertheless the more of these 

elements that exist, the better models we will get with a better “assumption engine”. Better assumption engines will 

eventually reduce the modeling problem in some cases to a tradeoff between amount of computing power available 

and data available.  
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REPRODUCIBILITY INFORMATION 

 

The results for this paper were calculated on Windows 7 machine using the Model Combiner tool that is available on 

(Barhak & Garrett 2016). Python 2.7.11 and Anaconda 2.4.1 (64-bit) with Inspyred 1.0 were used. 

The Reference Model results were generated using MIST version (0,94,1,0) and model version 33, results are stored 

in the archive MIST_RefModel_2015_12_20_OPTIMIZE.zip and best repetition in the archive 

MIST_RefModel_2016_01_28_BEST_REPEAT_TraceBack.zip. 
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