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ABSTRACT 

 

One of the main limitations in predictive analytics is the acquisition cost of engineering data due to slow-running 

computer code or expensive experiments.  Also, data is often multi-dimensional and highly non-linear in nature, 

causing problems for standard statistical predictive models. Once data is collected and models are built, many 
applications require accurate and scalable uncertainty quantification (UQ) solutions to enable robust design and 

reliable decision making. A modeling framework that addresses these common problems is presented here. The 

advanced Bayesian modeling framework called “GE Bayesian Hybrid Modeling” (GEBHM) combines simulation and 

experimental data sources using machine learning techniques and Bayesian statistics to perform UQ, provides detailed 

sensitivity reports for design engineers, visualizes the problem and its solution succinctly, and aids in developing next-

step plans for decision makers. GEBHM works well for cases with sparse data situations but also handles large-data 

problems. Fundamentally, GEBHM relies on Markov Chain Monte Carlo techniques for accurately learning the 

Bayesian model parameters and employs state-of-the-art techniques for self-validation. The GEBHM framework 

applied to an example engineering design problem requiring FE and/or CFD data is presented. It is demonstrated how 

the surrogate model is built, how uncertainty sources are quantified and propagated, how the impact of design 

decisions on performance is quantified, and how the engineering design is optimized. It is shown that the framework 
is capable of handling problems with limited data, accurately capture the uncertainty, and provide a high level of detail 

and accuracy for the designers and decision makers. 
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INTRODUCTION 
 

In this paper, we present a Bayesian Hybrid Modeling (GEBHM) framework developed originally by Kennedy and 

O’Hagan (KOH) (Kennedy and O’Hagan, 2001). Researchers at Los Alamos National Lab (LANL) implemented the 

framework into a code which the Probabilistics Lab at General Electric Co.’s (GEs) Global Research Center (GRC) 

adopted and significantly enhanced. We call it the GEBHM approach and it follows Kennedy and O’Hagan’s (KOHs) 

Bayesian calibration technique of using Gaussian Processes (GPs) to model the simulation output and discrepancy 

between the simulations and experiments (Kumar, Subramaniyan, and Wang, 2012; Subramaniyan et al., 2011). The 

GP model can then predict the uncertainty in the output parameters due to the uncertainty in the inputs. We illustrate 

this framework in Figure 1.  Meta-models are created and the uncertainty is quantified simultaneously by construction 

through a Markov Chain Monte Carlo (MCMC) approach (Hastings, 1970; Higdon, Lee, and Holloman, 2003). 

GEBHM is an enhanced version of the LANL implementation and we have applied it to a wide variety of benchmark 

and industrial problems. 
 

The BHM framework allows the combination of multi-fidelity and sparse data sources. Figure 1 shows a case where 

high-fidelity experimental data is known as well as lower-fidelity simulation results. In performing any probabilistic 

analysis, validation is surely important. Validation of simulations often involves a comparison with experimental data. 

This is at the heart of BHM. Furthermore, ideally, if we had a statistically large number of simulations and 

experiments, it is straightforward to use traditional statistical methods for validation. However, it is quite rare to have 

sufficiently large number of simulations and experiments in real engineering applications. Modern system level 

engineering models are typically complex and are computationally very expensive. Even with the fastest computers 

available today, it is impractical to perform a statistically large number of simulation runs. Through multiple different 

modules, the BHM framework lets the design engineer verify, validate, and confirm a multitude of properties related 

to the data quality, the model quality, and the physics being modeled. We demonstrate a handful of these in later 
sections. Finally, to address how we should expect BHM to handle sparse data, the technology fundamentally relies 

on GP meta-modeling which handles sparse-data scenarios inherently well (MacKay, 1999). This is through the 

Bayesian nature of the approach through which expert knowledge can readily be encoded in the priors to reflect our 

belief about the problem at hand. 

 

 
 

Figure 1. GE’s Bayesian Hybrid Modeling (GEBHM) Framework Allowing for Data-Fusion 
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METHODS DEVELOPMENT AT GE 

 

Since KOH first introduced the BHM algorithm in 2001, much research work has been done by government, academia 

and industry but many issues and technical challenges remain, particularly when applying the algorithm to solve real 

engineering problems. The key challenges include, but are not limited to: 

 Curse of dimensionality (hundreds or thousands of parameters) 

 Model inadequacy (identifiability) and characterization 

 Transient data with multiple outputs 

 Lack of data and extrapolation 

 Multiple sets of experimental data 

 Model validation metrics 

 Measurement errors and noise 

 Multi-physics & multi-fidelity models. 

 

As previously mentioned, GRC has made extensive enhancements to the KOH framework which address the above 

technical issues and challenges. MCMC analysis is the largest bottleneck to fast execution of BHM. Computations 

quickly becomes intractable as the number of calibration or model-tuning parameters grow larger than ten. A few 
techniques including parallel MCMC and adaptive convergence of the Markov chain were developed at GRC to this 

aspect of the algorithm. These enhancements made the BHM algorithm applicable in solving complex engineering 

problems with large number of parameters (200+) at GE. Besides enhancements to the MCMC aspect of the algorithm, 

significant improvements were made to enable correct treatment of transient data with multiple outputs, forward 

uncertainty quantification, model validation metrics, flexibility and visualization of the BHM calibration process and 

outcomes. This effort led to efficient implementation of BHM on a wide variety of both steady state and transient 

problems. This in-house version of BHM, GEBHM, has been successfully applied to several engineering problems 

over the years. 

 

Solutions Provided by GEBHM 

 
GEBHM can be used for model calibration when both simulation and experiment data are available. It can also be 

used for building metamodels (surrogates) if only simulation or experiment data is available. Some of the key elements 

that sets BHM apart from other approaches include, but are not limited to: 

 An explicitly formulated discrepancy 𝛿(∙) 

 The building of GP emulators for the simulation- and discrepancy models during the calibration and updating 

process 

 The model discrepancy formulation helps prevent over-tuned physics models 

 

GEBHM is a strict superset of BHM and includes the ability to build meta-models (surrogate models) if only 

simulation or experimental data is available. The GEBHM methodology builds a flexible predictive model suitable 

for complex nonlinear and multi-dimensional processes.  Care has been taken in the implementation to avoid over- 

and underfitting.  The Bayesian approach enables reliable results even when only sparse data are available. BHM 

models have proven to be powerful as the basis of a variety of analyses including failure probability, reliability, 

uncertainty quantification/propagation, and robust design. A key advantage over other meta-model techniques is 
accurate predictive uncertainties.  A fast, global sensitivity analysis module provides insight into the process being 

modelled and aids further model improvement.  In circumstances where data is available at multiple fidelities, a data 

fusion methodology is employed to reduce the amount of high-fidelity data required.  The result is high-fidelity 

predictive accuracy at low-fidelity cost.  The high-fidelity model consists of tuned predictions based on the low-

fidelity data along with a spatially varying discrepancy term.   

 

In this work, we chose to demonstrate the meta-modeling aspect of GEBHM, but refer the interested reader to, e.g., 

the work in (Higdon et al., 2004; Kumar, Subramaniyan, and Wang, 2012) for more details on calibration. 

 

THEORETICAL FRAMEWORK 

 

The GEBHM technology was developed to combine data from numerical simulations and experimental sources (multi-
fidelity) to build hybrid data-fused Bayesian models of potentially multi-dimensional responses. For more details on 
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the BHM framework please consult (Higdon et al., 2004; Higdon et al., 2008; Higdon, Nakhleh, and Williams, 2008). 

It can equally be used to combine low- and high-fidelity simulation models. As described by KOH, the experimental 

observations of outputs y can be expressed as: 

 

𝒚(𝒙𝒊) ± 𝝐(𝒙𝒊)  = 𝜼(𝒙𝒊, 𝜽) + 𝜹(𝒙𝒊), for 𝑖 = 1. . 𝑛, 
 

where n is the number of experimental observations, 𝜃 are the true values of the model/tuning parameters,  is the 

discrepancy between the calibrated simulator  and the experimental observation 𝒚, and  are the well-characterized 
observation errors (an optional input to the Bayesian framework).  

 

As proposed by KOH, and as described by Higdon et al. (Higdon et al., 2004), the two sources of data are combined 

by simultaneously estimating the parameters in the  model as well as the  model, which are described as GP models. 
  

The parameters of the  and  Gaussian process models are called hyperparameters and are computed using 
probabilistic techniques such as MCMC. We use the Metropolis-Hastings (Hastings, 1970) algorithm with univariate 

proposal distributions for the MCMC posterior updates. The initial values of the covariance matrices are updated with 

current realizations of the hyperparameters at every MCMC step and realizations from the posterior distributions of 

the model parameters are produced. This ensures that one does not over-fit the high-fidelity data since the MCMC 

process tries to find the most probable values for the model parameters that fit the data accurately. One-off values for 

the model parameters are automatically discarded. 

 

Variance-Based Global Sensitivity Analysis 

 

For design of large complex systems in which GEBHM is frequently employed, it is essential to understand the relative 

importance of system input variables and their interactions with respect to the desired system outputs. Having the 
knowledge of relative sensitivity of input design parameters or uncertain random variables can help the engineers in 

several ways including accelerating through the design of experiment matrices or recognizing a set of critical design 

or uncertain variables that need more attention to name a few. Primarily, sensitivity analysis is performed either by 

local or global methods, the latter being more comprehensive and informative. Variance based global sensitivity 

methods are getting increasingly popular and will be the topic of the following discussion based on the paper by Sudret 

et al. (Sudret, 2008): 

 

Let 𝑦(𝑥) = 𝑔(𝑥1, 𝑥2, … , 𝑥𝑛), where 𝑥𝑖 ∈ [0, 1]. Sobol decomposition of 𝑦(𝑥) is written as: 

𝑦(𝑥) = 𝑓0 + ∑ 𝑓𝑖(𝑥𝑖)
𝑛
𝑖=1 + ∑ 𝑓𝑖,𝑗(𝑥𝑖 , 𝑥𝑗)1≤𝑖<𝑗≤𝑛 + ⋯ + 𝑓1,2,…,𝑛(𝑥1, 𝑥2, … , 𝑥𝑛) (2) 

 

The functions f are defined as: 

𝑓0 = Mean of 𝑦(𝑥) =  ∫ 𝑔(𝑥)𝑑𝑥 (3) 

 

𝑓𝑖(𝑥𝑖) = Main effect functions =  ∫ 𝑔(𝑥)𝑑𝑥~𝑖 − 𝑓0  = Integrate f(x) with all inputs except  𝑥𝑖 and subtract the mean. 

The result will be a function of only 𝑥𝑖. 

 

𝑓𝑖,𝑗(𝑥𝑖, 𝑥𝑗) = Two way Interaction effect = ∫ 𝑔(𝑥)𝑑𝑥−{𝑖,𝑗} − 𝑓𝑖(𝑥𝑖) − 𝑓𝑗(𝑥𝑗) − 𝑓0  (4) 

 

To get interaction effect functions, integrate g(x) with all inputs except the inputs 𝑥𝑖 and 𝑥𝑗  and subtract the main 

effect functions of 𝑥𝑖 and 𝑥𝑗  and the mean of g(x). Higher order interaction effects can be written in a similar fashion. 

Using the above main and interaction effect functions we can compute the Sobol indices. We let D denote the variance 

of the true function g(x). 

                                                𝐷 = 𝑉𝑎𝑟[𝑔(𝑥)] =  ∫ 𝑔2(𝑥) − 𝑓0
2 (5) 

 

By integrating the squared of Eq. (1) and using the orthogonality property, one gets: 

                                                      𝐷 =  ∑ 𝐷𝑖
𝑛
𝑖=1 +  ∑ 𝐷𝑖,𝑗1≤𝑖<𝑗≤𝑛 + 𝐷1,2,..𝑛  (6) 

                                                                 𝐷𝑖 =  ∫ 𝑓𝑖
2(𝑥𝑖)𝑑𝑥𝑖  (7) 

 

                                      𝐷𝑖1,𝑖2,…𝑖𝑠
=  ∫ 𝑓𝑖1,𝑖2,…𝑖𝑠

2 (𝑥𝑖1
, 𝑥𝑖2

, … . , 𝑥𝑖𝑠
)𝑑𝑥𝑖1

𝑑𝑥𝑖2
… . 𝑑𝑥𝑖𝑠

  (8) 
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Sobol Indices (𝑆𝑖) can then be computed as: 

                                                                          𝑆𝑖 =
𝐷𝑖

𝐷
         (9) 

                                                                          𝑆𝑖,𝑗 =
𝐷𝑖,𝑗

𝐷
                                                                   

  

Main effect Sobol indices and interaction effect Sobol indices sum to 1: 

                                                        ∑ 𝑆𝑖
𝑛
𝑖=1 + ∑ 𝑆𝑖,𝑗1≤𝑖<𝑗≤𝑛 + 𝑆1,2,…,𝑛 = 1                                  

 

Hence, each Sobol index is a sensitivity measure. It describes how much of the total variance is due to the uncertainties 

in a set of input parameters. The first order indices Si give the influence of each parameter taken alone and the higher 

order indices account for possible mixed influence of multiple parameters. 

 

Total effect of an input 𝑥𝑖 is defined as the sum of all partial sensitivities involving the input 𝑥𝑖. For example, total 

sensitivity of input 𝑥1 can be written as: 

 

                        𝑆𝑇1 = 𝑆1 + 𝑆1,2 + 𝑆1,3 + ⋯ + 𝑆1,𝑛 + 𝑆1,2,3 + 𝑆1,2,4 + ⋯ . 𝑆1,2,𝑛 + ⋯ + 𝑆1,2,…,𝑛           

                                      𝑆𝑇𝑖 = 1 − 𝑆~𝑖 = 1 – sum of all indices not involving input 𝑥𝑖                    

 

Sobol indices are good descriptors of the model sensitivity to its input parameters, since they are void of assumptions 

regarding any monotonicity or linearity in the problem. 

 

The GEBHM global sensitivity analysis module computes the Sobol indices for any GEBHM model.  The model form 

may be integrated analytically, avoiding the use of sampling-based methods for computing Sobol indices.  The result 

is a relatively fast sensitivity analysis even for models with many input parameters.   
 

APPLICATION: OPTIMIZATION OF A GENERIC TWO-PHASE FLOW SYSTEM 

 

As an advanced application of the GEBHM framework, we consider a gas-liquid two-phase flow system (Miki, 2014). 

Two-phase flows are encountered in applications such as turbo-machinery, gas-turbines, ram-jet and scram-jets, 

automotive engines and aircraft engines. We seek to understand the effect of operational parameters, geometric 

variations, and their interactions on two-phase flow behavior since this is essential for future combustion system 

designs. Two-phase flows such as jets and sheets can be significantly non-linear with respect to the geometry and flow 

parameters. The goal of our application is to apply a probabilistic optimization to minimize the number of simulations 

or experiments that are needed to obtain an optimal two-phase flow configuration. We start with a generic two-phase 

flow configuration and end up with a final design where four geometrical design parameters are optimized. This 
procedure consists mainly of four processes, see Figure 2. Due to time constraints, all data is from numerical 

simulations. We stress that, given the GEBHM framework, the procedure presented here can also use a subset of 

experimental data as well with great benefits to the final predictions. 

 

 
Figure 2. Two-Phase Flow Optimization Procedure 

 
Figure 3 shows the two-dimensional axisymmetric cross section of the generic two-phase flow configuration 

considered. It consists of a single stream of air (inflow1) and two co-axial streams of liquid (inflows 2 and 3). The 
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small separation between air and liquid results in an unstable shear layer and promotes the breakup of the liquid. 

Domain A is the separation between the liquid streams and is the primary region for design optimization. To quantify 

and vary the separation shape, introduce two random variables θ1 and R1, defined as LA2/LA1. LA1 is calculated by 

H/tan(θ1) (see bottom left of Figure 3). When R1 ≥ 1, there is no vertical cut near D. Consider now inflow 3. The 

bottom portion of the circuit, denoted Domain B, acts as a guide to the liquid stream. It can be critical for the two-

phase flow characteristics. Introduce further two random geometrical variables, namely θ2 and R2. Here, R2 is the ratio 
of LB2 to LB1. Point P is the location where slope F-G reaches the height of the of the upper liquid separation.  R2 is 

enforced to be less than unity so that the wall does not interfere with the flow path. 

The Reynolds number based on the inflow 1 height and velocity is around 40,000 making it reasonable to assume a 

turbulent inflow profile. At the outflow, impose a 0 Pa gauge pressure as the pressure-boundary and allow the 

formation of a recirculation zone. 

 

 

 

 

Design of Experiments (Sampling) 

 

An optimized Latin hypercube design (Viana, Venter, and Balabanov, 2010) is used to generate the initial input design 
space. Find the bounds of the variables listed in Table 1. A total of 19 DOE points in 4 dimensions were generated 

with corresponding geometries shown in Figure 4. The corresponding geometries are shown in Fig 4. Computational 

Fluid Dynamics (CFD) was simulated at each DOE point with the Volume-of-Fluid (VOF) model available in 

ANSYS-Fluent Version 14.5 The data obtained consists of the liquid location distributions (LLD), the liquid size 

distributions (LSD), and the mass flow rate distributions (MFRD) at a location downstream. 

 

Table 1. Variable Bounds 

  
Lower 

limit 

Upper 

limit 

R1  0 1.2 

R2 0 1 

θ1 (deg.) 0 90 

θ2 (deg.) 0 θ1 

 

At this point, we can mention an additional benefit of 

GEBHM, namely its ability to accurately predict 

responses while given that input variables are 

correlated or confounded. In addition to the BHM 

model, global sensitivity analysis and independent 

validation was performed to ensure the validity of the 

model predictions.  

 

Figure 3. Computational Domain with emphasis 

on the region of study (A and B) 
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The geometric design is optimized via the following quantities of 

interest (QoIs): (1) LSD (2) LLD, and (3) MFRD. The median values 

and their 95% variation are used as optimization objectives for (1) 

and (2), whereas the variance of the mass flow rate is used for (3).  

The cumulative density function (cdf) of each of the QoIs was 

discretized at the following fractional probabilities: [0.1, 2.3, 15.9, 
50, 84.1, 97.7, 99.9], see Figure 5. 

 

 
Figure 5. Example cdf’s of the LSD, LLD, and MFRD 
 

 

 

 

 

 

GEBHM was built for the cdfs of location, size and mass flow rate. The Bayesian framework captured the response 

of all three cdfs as a function of the four geometric parameters as shown below: 

[

{𝐶𝑙𝑜𝑐
𝑖 }

{𝐶𝑠𝑖𝑧𝑒
𝑖 }

{𝐶𝑚
𝑖 }

] = 𝑓(𝑅1, 𝑅2, 𝜃1, 𝜃2) 

where 𝐶𝑙𝑜𝑐
𝑖  is the cdf location at a probability of 𝑝𝑖 with 𝑖=1,2…7, 𝐶𝑠𝑖𝑧𝑒

𝑖  is the size at a probability of 𝑝𝑖and 𝐶𝑚
𝑖  is the 

mass flow rate at a probability of 𝑝𝑖. The model predictions are compared to the data for the location cdf’s in Figure 

6. The other cdf’s are captured equally as well. From now on, only results for the location distribution are presented. 

 

Figure 4. Corresponding Geometries of 

DOE Points 
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Next, an effort was created to identify the most significant 

geometric parameters and their interactions driving the 

location distribution. Variance-based global sensitivity 

analysis was performed within GEBHM. The parameters that 

affect the median of the location distribution are shown in 

Figure 7 in decreasing order of importance. 

 

The contribution of the variance in location distribution 

median due to the interaction between R2 and 𝜃2 is shown in 

Figure 8. The DOE data points are shown as white dots. 

Two regions with minimal uncertainty are identified (blue). 

GEBHM provides these uncertainty maps as a useful guide 

in determining the next set of simulations and/or 

experiments. The maximum uncertainty is low enough that 

the current models are deemed satisfactory to perform 

geometric optimization of the two-phase flow problem.  

Optimization 
 

Given that a satisfactory BHM model built in the 

previous sections, a next logical step is to employ it in 

an optimization setting to find the optimal geometry of 

the flow system. To this end, Particle Swarm 

Optimization (PSO) was used for global optimization 

(Eberhart and Kennedy, 1995; Bratton and Kennedy, 

2007). PSO has been applied successfully to non-linear 

optimization problems. PSO has been shown to achieve 

near global optimum solutions like those computed 

using evolutionary algorithms like Genetic Algorithms 
(Golberg, 1989) at much faster convergence rates. PSO 

also requires fewer parameters that need adjusting. 

 

The Bayesian models were used to optimize the 

geometry for several different objectives. The 

objectives for the various cases are listed in Table 5. The 

multiple objective cases 1 through 3 were the design 

optimization runs and the other cases were used for 

identifying the maximum achievable improvement for 

each of the objectives individually while disregarding 

the other objectives. 

 

 

 

 

 

 

 

 

Figure 6. Comparison of Location cdf 

Predictions and Data 

Figure 7. Global Sensitivity of Median Location 

to Input Parameters 
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Table 5. Optimization Cases 

Case Objective 

1 

Maximize median location, minimize location 
2 sigma, minimize Mass 2 sigma, minimize 
median size and minimize size 2 sigma 

2 

Maximize median location, minimize location 
2 sigma, minimize Mass 2 sigma, fix median 
size at 75 and minimize size 2 sigma 

3 Case 2 with higher weight for Mass 2 sigma 

4 Maximize median location 

5 Minimize Location 2 sigma 

6 Minimize Mass 2 sigma 

7 Minimize Size 2 sigma 

8 
Fix Size median to 75 and minimize Size 2 
sigma 

9 
Fix Size median at 75 ± 3 and minimize Size 2 
sigma 

10 
Fix Size median at 75 ± 1 and minimize Size 2 
sigma 

 

The optimum geometries resulting from the main optimization tasks, cases 1-3, are shown in Figure 8.  The VOF for 

each of the optimized geometries are shown in Figure 9. Subtle differences in the geometry produce large variations 

in the response as seen by the instantaneous VOF plots (column 3). Once the optimal geometries were identified, they 

were simulated using CFD again to validate the BHM model predictions. In Figure 10, we show the comparison of 

the location distribution as predicted by BHM and the one produced from CFD. GEBHM accurately predicted the 

cdf’s from the CFD run, further verifying the overall approach.  Thus, we show that fast predictions from the trained 

GEBHM model can replace expensive CFD computations.   

 

 

 

 

 

        

 

Figure 9. VOF for Optimized Geometries Figure 10. Comparison of predicted 

BHM location distributions to CFD 

Figure 8. Optimized Geometries for 

(a) Case 1, (b) Case 2, and (c) Case 3 
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CONCLUSIONS 

 

GE’s BHM (GEBHM) technology was presented in detail through overview discussions, the theoretical framework 
was presented, and finally via a computationally expensive Computational Fluid Dynamics (CFD) application of 

optimizing the geometry of a two-phase flow system. Accurate Bayesian models for predicting the distribution of the 

liquid phase location, size, and mass flow rates were built at minimal computational cost. Global sensitivity analysis 

was performed with the BHM models. This helped to identify the most significant parameters and rank their relative 

significance. The BHM framework was used to optimize the geometry under various objectives when coupled with a 

global optimization technique. The visualization module of BHM helped guide the design engineer towards the 

optimum solution and provided further insights into the problem at hand. BHM could accurately predict the full 

distribution of droplet location, size, and mass flow rate accurately despite the sparse data available. The mass flow 

rates were also predicted accurately for cases with unimodal distributions. GEBHM was thus shown to reduce the 

computational cost of design process as well as accurately model nonlinear responses with sparse datasets 
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