

MODSIM World 2017

2017 Paper No. 71 Page 1 of 17

“System of Systems” Approach for the Development of Next Generation Modular

Simulation-Based Training Systems

Cory Kumm John Burwell

Bohemia Interactive Simulations Inc. Bohemia Interactive Simulations Inc.

Orlando, FL Washington DC

Cory.kumm@bisimulations.com john.burwell@bisimulations.com

ABSTRACT

Within the defense sector of the modeling & simulation industry, most simulation-based training

systems are comprised of a mixture of heterogeneous technologies that are highly challenging and

expensive to develop, maintain and network. Some systems consist of custom-developed solutions

and/or exploit open source technologies. Others rely on commercial, off-the-shelf (COTS) and

government off-the-shelf (GOTS) tools. The use of closed, proprietary technologies, data and tools

can have great benefit, but adds complexity, cost and risk. Even though a variety of industry

standards for communication protocols and datasets exist today for various components of

simulation solutions, no formalized intra-organizational “system of systems” approach exists for

simulation solution development. As such, simulation software developers are often forced to use

ad-hoc development and non-standard methods to interface technologies, especially when working

with proprietary components. These ad-hoc methods increase development time and add cost and

risk that could be reduced if simulation systems were developed using a common set of industry

standards and methods. Where organizations like the Simulation Interoperability Standards

Organization (SISO) are helpful, major gaps remain. This paper discusses why the gaps occur and

methods that have been used to eliminate them.

ABOUT THE AUTHORS

John Burwell has 30 years of experience developing innovative and disruptive technologies used

for simulation and training. With a focus on simulation and virtual environments, John has

supported companies developing image generation systems, virtual worlds, serious games,

computer graphics, and geospatial imaging. John has a bachelor’s degree in Electrical Engineering

and Computer Science from the University of Colorado and an MBA in International Business

from Thunderbird in Glendale, Arizona.

Cory Kumm’s career spans over 20 years and several industries including entertainment,

aerospace, defense where he has contributed to a variety of technology awards and patents. Cory

established and ran a division at Havok with responsibility for adapting game-based technologies

to the needs of the simulation community. Prior to Havok, Cory worked on artificial intelligence

projects at MASA Group. From 2002-2009 he held product management roles with Biographic,

Engenuity & Presagis for COTs technologies. Cory is an alumnus of Concordia University having

studied computer science and is a certified Product Management & Marketing Professional.

mailto:Cory.kumm@bisimulations.com
mailto:john.burwell@bisimulations.com

MODSIM World 2017

2017 Paper No. 71 Page 2 of 17

INTRODUCTION

Traditionally, simulation system developers relied on fully custom hardware and software to build

training systems. As commercial off-the-shelf (COTS), Government off-the-shelf (GOTS) and

Open Source technologies became more capable, solutions became more modular and integration

and interfaces gained importance. Developers were faced with challenges stemming from a lack

of formalized industry standards and a need to more effectively design and develop ever more

complex systems. Standards organizations like the Simulation Interoperability Standards

Organization (SISO) were set up to help, and have been invaluable in providing a venue to create

and manage standards, but major gaps in the standards to support interoperability remain. In fact,

gaps are widening as commercial technologies from the video game industry must be leveraged to

address defense budget challenges. Today, with billions of dollars being invested by the video

game industry in virtual and augmented reality technologies, an opportunity exists for the

simulation industry if appropriate to leverage this massive investment however interoperability

questions remain.

For many years Bohemia Interactive Simulations (BISim) has operated by taking video game

technology and adapting it for simulation use. In [2013], BISim began working to establish a

framework for simulation development that supports the integration of a variety of traditional

government simulation and emerging commercial technologies to create powerful training

solutions. The framework allows for the creation of services or plugins that interoperate through a

standard, well-defined application program interface (API). Based on ongoing program

requirements, BISim has developed an internal set of standards and applied them to all

developments under a new modular simulation development framework called Gears. This

framework uses a set of common APIs, which developers can use to create collaborative systems

that are highly performant, easy to debug, modular by design, and less costly to develop and

maintain as compared with other methods. Over the past few years, the APIs have matured and we

now believe the framework is ready to be exposed to the greater simulation community in the form

of a standards-based, system of systems development approach for the modeling and simulation

industry.

BISim wants to share our findings and collaborate with industry to foster further development and

potentially establish a new formal, system-of-systems development standard. It is our view that

for the industry to provide more “just-in-time” production capability of sophisticated simulations,

the industry’s system integrators and software vendors will need to work more closely on these

paradigms, sharing more openly than has historically been the case. In this paper we will outline

the basis of the proposed modular simulation development framework and describe real projects

where we have successfully used Gears to develop interoperable technology that links legacy

simulation systems with emerging commercial gaming technologies and other third-party

applications. We will identify the industry challenges faced, share solution concepts, and discuss

our rationale for the system of systems approach. Finally, we’ll provide our view on next steps of

how this capability could become an open standard with the simulation industry benefiting and

contributing to further development.

MODSIM World 2017

2017 Paper No. 71 Page 3 of 17

INDUSTRY CHALLENGES

The defense industry continues to express a desire to work with common open and modular

architectures that are not limited by proprietary software to modernize and keep pace with new

technologies. The United States Air Force, for example, has 46 complex simulation systems that

average 11 configurations, which amounts to 506 unique systems used in multirole player training.

[1] These systems must connect to form a common or joint exercise and many systems have been

created using proprietary technology developed and updated by many integrators and

subcontractors over the span of the last 20 years. These systems are all custom developments with

architectures that require support from the original vendors – even for small enhancements. [1]

With major advancements in hardware and operating systems over a 10+ year span, small

enhancements can end up requiring a complete overhaul and re-write of the system. Enhancements

may turn into full maintenance programs that require a complex series of requests for funding,

proposal and program award competitions, and, finally, years of actual development and

deployment of the capability. The duration of the entire process is roughly 3 to 5 years from start

to finish which is completely untenable for the sort of operations tempo faced by the DoD today.

Understandably, the Air Force is asking industry for a strategy to facilitate accelerated

development and updates of simulator systems including, but not limited to, upgrades of the 46

disparate simulation systems. [1] The desired modular development capability being requested by

the Air Force has been named SCARS or Simulator Common Architecture Requirements and

Standards. SCARS describes a desire for a common open architecture to facilitate rapid

development and avoid pitfalls of being ‘locked’ into the use of proprietary technology. SCARS

today is a concept, and the Air Force has asked industry for a response on how industry can help

modernize and accelerate simulation-based Air Force training enhancements.

The U.S. Navy is also hard at work trying to solve a similar problem with its Future Airborne

Capability Environment Technical Standard Edition or FACE™. FACE is an effort coming out of

the Naval Air Systems Command (NAVAIR) naval aviation systems command (PMA-205) to

define a new set of open architecture standards for the development of new training systems. With

the cost of software development for these systems rising exponentially and under pressure to

reduce costs, reuse of software across training systems is essential. An open architecture, utilizing

open standards at defined software interfaces is the desired future for training systems.

Standards that allow disparate systems to simply communicate with one another is only part of the

challenge. Another challenge of common interoperable solutions relates to content and context.

For example, there is the need for various forces to have a common “fair fight” where all entities

operating as a joint force experience the same synthetic environment. Fair fight refers to having

correlated, synthetic environment representations within a collective simulation. The U.S. Army

is currently asking industry to develop concepts for a common, one-world synthetic terrain

simulation capability comprised of open standards that various disparate simulation systems can

leverage for training or analysis needs. The U.S. Army’s Synthetic Training Environment (STE)

MODSIM World 2017

2017 Paper No. 71 Page 4 of 17

is designed to provide collective multi-echelon training and mission rehearsal capability for all

training domains across the Army. [2] The common synthetic environment has the mandate to

provide rapid training capability with minimal manpower required to develop geo-specific or real-

world virtual geographic updates to the STE anywhere in the world. The intent is to have one

common, validated source of information that can be used by all virtual, constructive and gaming

training systems. The complex derived requirement is that all the various simulation systems such

as those described earlier for the Air Force would need to support a common synthetic

representation of the world.

Other considerations are reduced defense budgets, which lead to a reduction of live training and

an increasing focus on simulation-based training, a need to modernize legacy training systems,

and, most importantly, significant advances in computing and hardware technologies and

simulation software, meaning simulation training is becoming more and more realistic and

capable. Leveraging commercially developed technologies, particularly from the video game

industry, is of increasing interest as billions of dollars in R&D are spent each year on videogame

software advancements and some core elements of the technology can be re-used for training

purposes. For example, emerging virtual reality technologies currently in development for

entertainment applications are well suited for many part task training programs. Since commercial

video game technologies do not follow standards as they are often very bespoke developments

incorporating these technologies into training programs can be particularly challenging.

As modernization efforts begin to consider the latest commercial hardware and software solutions,

an ever-growing plethora of new technologies and devices coming from the commercial sector are

being considered. These include Virtual Reality (VR) devices such as the helmet mounted displays

(HMD)s from Oculus Rift and HTC Vive. These devices, coupled with modern, game-based

rendering technology, should be able to support various human-in-the-loop training systems,

replacing some of the larger more traditional (and far more expensive) dome- and collimated

display-based training devices. The conundrum, however, is that the defense acquisition cycle is

far too slow to keep pace with the commercial sector’s advancements. One Defense industry

program refresh cycle requiring 3 to 5 years can represent several new generations of commercial

technologies. Consumer VR headsets, for example, will have released 3 to 5 new versions and a

myriad of driver updates during a 3- to 5-year period, and within the same time frame early

versions of these devices will have become obsolete and unsupportable. For example, Oculus

Rift’s evolution is illustrated below:

● 2013: the developer version of Oculus Rift called DK1 was released with a combined

resolution of 1280×800 and initial PC hardware requirements.

● 2014: the developer version DK2 was released with increased HD (1920x1080) resolution

support and increased hardware requirements. DK1 was made obsolete.

● 2016: the commercial version of Oculus Rift started shipping, with more stringent

hardware and driver requirements than the DK2 version.

● 2017: Oculus Touch new hand controllers designed to work with the Rift are introduced,

again new drivers and development integration requirements for the new hardware.

MODSIM World 2017

2017 Paper No. 71 Page 5 of 17

Developers’ challenges are many: modernizing and keeping systems up to date; integration of a

variety of heterogeneous simulations often from a variety of sources; development and

maintenance of a common world representation; and, reducing costs via leveraging new

capabilities such as virtual reality. To provide the best training capability possible for the

warfighter, we need to constantly evolve capabilities and increase overall system fidelity including

taking advantage of new technologies as they become available. We must also find ways of

iteratively enhancing training and simulation capability faster and with more agility than before,

which is why we need a common open standards-based, system-of-systems approach.

DEFINING COMPLEXITY AND ASSOCIATED INTERFACES

Bounding the approach to a system-of-systems architectural design effort requires an identification

of the technologies, interfaces and various subsystems that must work together via a schema

required to achieve the targeted solution sets. At the top level, solutions require core hardware and

software elements that serve as the fundamental platform for a training device or simulator that

potentially connects with other simulators and live assets to support collective training. Key

hardware elements to consider are listed below:

Hardware Components Elements

Personal Computer (PC) CPU, GPU, Graphics card, system bus, I/O, Memory, Storage

systems

Networks (LAN, WAN, Internet) Physical layer, protocols, switches, I/O Devices

Display Systems Monitors, Projectors, Domes, Collimated Displays, VR and AR

HMDs

Headsets and Speakers

Motion Systems Cueing devices, 3DOF, 6DOF

Interface Devices HOTAS, Joysticks, Steering wheels, pedals, instrumentation

Crew Stations Cockpits, Shoot Houses, Classrooms

Hardware Challenges

Hardware components, especially CPUs, graphics cards, and displays, change frequently.

Developing with this evolution in mind requires the use of middleware concepts for software

design and for hardware suppliers to minimize any changes to the exposed interfaces for

developers. A relevant example here would be OpenGL or DirectX. These interfaces evolve

relatively slowly to ensure that software developed can function on legacy, current and future

hardware for a commercially reasonable lifecycle, which is typically 5 years. Where 5 years is still

not adequate for the typical lifecycle of a simulation platform, these interfaces tend to be very

stable and enduring in the commercial sector. Key software elements to consider are listed below:

MODSIM World 2017

2017 Paper No. 71 Page 6 of 17

Software Components Elements

Operating Systems Windows, Linux, VxWorks

Application Code As needed to support subsystems

Network Communication Protocols DDS, CIGI, DIS/HLA, TENA, Link 16

Physics Model Representation Physx, Bespoke

Industry Standards CIGI, OSVR, CDB, DIS/HLA, NPSI, OpenStreetMaps,

OpenFlight

Databases GIS data, DEMs, Shape Files, Imagery, 3D Model Data

Graphics APIs OpenGL, DirectX

Software Challenges

Software-based technologies are often less stable, mostly custom and vary substantially from

vendor to vendor in terms of openness, longevity and compatibility as a component of a larger

solution. Here, over the years, development practices have evolved from monolithic applications

(stove pipe) to more modern, componentized middleware approaches. For the purposes of this

paper, we will focus on the interfaces that are intended to provide an ability for integrators to build

“systems of systems”.

APPLICATIONS

Running on the hardware platform are a series of applications that must work together to provide

functionality which replicates man-made and natural systems. Some of these applications are based

on 20-year-old validated programs that are ideally reused. Others applications are based on cutting-

edge technologies coming out of the commercial video game industry. Ideally, solutions can be

developed using the best-of-breed applications, regardless of origin. Creating training solutions

for military application requires a the right mixture of realistic virtual environments, realistic

weapon system simulations, intuitive interfaces and assessment capabilities to monitor human

performance. The exact feature and performance requirements vary by use case. Where the list is

far from comprehensive the following is a list of example functionalities required:

● User interface

● Virtual environment

● Avionics and weapon system simulation

● Immersive display

● Crew station

● Vehicle simulation

● Radio communication and sound capabilities

● Assessment and scoring capabilities

● Networked, multi-user operation

● Computer generated forces

As you can see from the above list, many hardware and software components are required to

MODSIM World 2017

2017 Paper No. 71 Page 7 of 17

develop these systems. To add further complexity, even the defense industry's own “standards”

continually evolve and often have been developed with specific implementations in mind. Each

category of device or software component has unique challenges. The goal is to define an optimal

approach where this sort of disparate applications can work together on a designated platform.

POTENTIAL APPROACHES

An approach promoted today around the DoD to address the development challenges is to avoid

the use of any proprietary technologies and in some cases to only use Open Source solutions. One

risk in this approach is that there is a limited market for most of the technologies needed to develop

high-performance simulations so without leveraging proprietary software that is continuously

updated and maintained, solutions will be sub-optimized or require significant and costly custom

development. Open Source solutions often lack a custodian meaning that no one organization is

motivated to maintain or update these solutions. Hardware and operating system evolutions then

become the responsibility of the DoD or organizations using these technologies in end applications

which means the long-term lifecycle costs must be considered. These costs are often far more than

the cost to use COTs technologies and may deliver less capability. Open Source technologies are

ideal for some applications, but with complex simulations, a mix of proprietary and nonproprietary

solutions will be much more effective. Another major risk is simply commercial - if companies

are not allowed to develop their own IP, they cannot be profitable and, in turn, can not hire top

quality developers and therefore the best talent will go elsewhere to other industries.

Supporting the needs expressed by industry for openness, modularity, ease of integration and

interoperability of heterogeneous simulation systems developed by various companies is very

challenging - extremely long platform lifecycles; current software “open standards” in use

overlapping in functionality with other similar components (having grown from initial uses into

other areas); and standards overloaded with features for convenience. As these software

components grew over the last couple of decades, most were built with specific applications in

mind and preconceived notions of use heavily embedded into these components. The real

challenge now is how to adapt 20+ years of software development to the desired open and modular

future the Government and industry is asking for. We believe the following factors need

consideration:

● Extensibility and futureproofing

● Ease of use, development & integration

● High performance

● Reusability of components

● Iterative development

● Backward and forwards compatibility

● Support for multiple programming languages, with no assumptions on how components

will be developed

● Integration with external systems or 3rd party technology

● Demand for non-proprietary systems

MODSIM World 2017

2017 Paper No. 71 Page 8 of 17

Certainly, one of the most important elements in an industry that requires 20+ years of capability

sustainment is futureproofing. Here we should consider how the commercial sector has succeeded

in providing some level of stability. DirectX & OpenGL both maintain ~5 years of stable APIs

that allow developers to support legacy, current or forthcoming hardware without customization

of software developed upon these APIs. Other examples include eBay, Google, Netflix and

Amazon all of which evolved from monolithic applications that were difficult to develop and

maintain into systems called “Ecosystems of Microservices”. [8][9][10] The evolution from

monolithic to microservice is actually very similar to the current transition the US DoD is asking

for. In the commercial sector, industry giants needed to be able to vastly expand their capabilities

supporting both internal development and external independent development all while maintaining

backwards and forwards compatibility knowing that their own platforms would evolve and

improve over time.

Ease of use, development and integration for these companies was facilitated by a new approach

of breaking down complexity into two layers. The first layer is the common, stable and as much

as possible unchanging external facing macro level APIs (OpenGL, DirectX instructions, for

example), and secondly a micro or component service API that is developed where constant

evolution and improvements can take place all while maintaining compatibility with existing

components.

Macro- or external-facing service-based APIs allow for a common description of all the interfaces

or services that various components will leverage. The micro or component APIs are relatively

small and easy to understand and develop. A component approach makes building solutions

simpler and more effective as only the new portions of the solution would require development

and existing functionality remains intact. The philosophy is that each API, either service or

component, can operate independently or be joined together to form larger functionality. If

component APIs are developed to support the stable service APIs, development, deployment and

interoperability can happen organically and keep legacy systems working while new capabilities

are introduced.

While this approach has a variety of benefits, it also has a few drawbacks:

● Publish/Subscribe bidirectional communication needs to be built into components

● Service APIs need to be meticulously designed and developed for futureproofing

● Additional overhead exists with component-based systems

o Additional memory required

o Development time increased to develop robust interfaces

PROPOSED APPROACH

Considering how the commercial sector is approaching the complexity for system of systems

development, and with an understanding of how the defense simulation community operates,

MODSIM World 2017

2017 Paper No. 71 Page 9 of 17

BISim chose to develop a microservice hybrid known as Gears. Gears is an open standards-based,

modular simulation development framework designed to meet requirements for ease of use,

modularity, support of multiple programming languages and the ability to maintain backwards

compatibility with legacy technologies. Gears uses an ‘API first’ design to facilitate the

development of components that are modular, re-usable, and safe to refactor.

Figure 1: Gears Framework.

Figure 1 illustrates an approach that has external service APIs and internal component APIs. This

approach uses the components to define larger features that then expose a service API layer. The

components themselves can be volatile, may change at any time, and, more importantly, will keep

pace with new capabilities added to a system. The “spokes” of the wheel are sets of functionality

that can be used alone or combined to produce a complete application. Each spoke can be replaced

without compromising the overall system or interface via the service API.

The Gears approach accomplishes the following:

● Organizes technology into components

● Exposes functionality through an API

● Follows standards for interoperability internally and with 3rd party products

● Combines groups of components to create solutions

● Allows components to access the functionality of other components directly

MODSIM World 2017

2017 Paper No. 71 Page 10 of 17

Figure 2: Example Implementation Using Gears Approach.

The best practices and guidelines of this approach include the following:

● Creating production-quality APIs

● Building components to implement those APIs

● Building products using those APIs and components

● Gears runtime that loads and executes components

● Gears Studio that accelerates building products using components by enforcing Gears rules

● Continuous build and integration infrastructure for build automation and distribution

(including test automation)

● Central location to store components and aggregate components

Sample of Current and Planned APIs

Environment

Terrain Provides query information relating to the terrain such as height,

normals, and surface type

Entity Provides an efficient way for developers to create and control entities

within a simulation

Scenario Provides functionality for setting scenario attributes such as time of day

or weather and allows hooking into scenario events such as mission start

or mission end

Intersect Performs intersection queries for objects and terrain within the

simulation

Munition Provides controls to create and display weapon fire effects and

detonations.

MODSIM World 2017

2017 Paper No. 71 Page 11 of 17

Camera Provides an efficient way for developers to create and control the

cameras needed to provide custom display solutions with VBS IG.

Interoperability

CIGI Used to create a CIGI session between a source and destination host.

Allows user to override behavior of all supported CIGI packets.

DIS Communicating via DIS in a distributed simulation environment.

Allows user to override behavior of all supported DIS packets.

HLA Communicating via HLA in a distributed simulation environment.

Allows user to override behavior of all supported HLA packets.

Systems

Sensor Provides mechanism for custom sensor implementations and is built

upon the Render API

Laser Provides mechanism to create and modify lasers in the simulation

including visualization

UI Provides ability to create, modify, and interact with UI elements. Used

to set callbacks for UI actions.

Desktop Input Provides easy access to input devices on the local machine such as

mouse, keyboard, joystick, and head trackers

Symbology Provides high level helper functions for drawing symbology in 2D and

3D. Built upon the 2D and 3D Render API

Utilities

Transform Provides access to object matrices and functionality for attachments.

Render Low level API that allows hooking into rendering passes and events, and

provides access to the graphics device. Allows custom rendering effects

and used to implement higher level 2D and 3D APIs.

2D/3D Render Provides high level helper functions for easier drawing and rendering in

2D and 3D. This is built on top of the Render API

Spatial Provides mechanism for manipulating the spatial coordinates of objects

in Geodetic or ECEF coordinates

MODSIM World 2017

2017 Paper No. 71 Page 12 of 17

Entity Manager Provides functionality that can be used to modify entity properties. This

can be used along with Spatial API to manipulate position and

orientation of entities

View Manager Provides a way to create and manage views and can be used with Spatial

API so that a view can be positioned and altered at runtime

CASE STUDIES

The utility of the Gears approach is best illustrated by a series of case studies that helped define

the fundamental approach to solving the challenges. Using Gears, BISim has successfully

developed a variety of projects with measurable successes in terms of reuse, development cost

reduction and improved reliability. The following describe real-world developments faced in

development of the Gears concept.

CCTT Manned Modules
The U.S. Army had a requirement to dramatically increase the realism of scenarios in the Close

Combat Tactical Training System (CCTT), one of the U.S. Army’s premier simulation-based

training systems that was originally developed in the 1990s. CCTT aims to provide armor,

mechanized infantry, cavalry and recon crews, units and staffs with a virtual, collective training

capability. CCTT comprises three major crew and individual simulators, the CCTT Manned

Modules, and Reconfigurable Vehicle Tactical Trainer (RVTT) System specifically designed for

vehicle training. For over 20 years, CCTT used traditional image generation systems to create the

out-the-window and sensor scenes for the trainees. But with developments in commercial video

games, new technologies became available in the form of VBS3, based on the ARMA videogame

technology, that could meet the new realism requirements for a fraction of the cost of the traditional

image generators. Interfacing the commercial video game technology with legacy simulation

systems was achieved by leveraging existing legacy CIGI standards through an interface to VBS

through a Gears API.

Using this approach, BISim successfully integrated new IG technology based on proprietary

commercial technologies and still support a myriad of joint, collaborative training systems required

for this project. Developments were completed within 2 years. Without the Gears approach, BISim

would have struggled to meet the stringent requirements of the initial phase of this massive project

not to mention the challenges ahead for future planned program enhancements.

VBS Tactics
Another example is the use of Gears for the development of a new software application, which is

a 2D web-based interface needed to provide for doctrinal control of artificially intelligent forces

in training scenarios. The goal of the solution was to enable commanders to practice tactics in

MODSIM World 2017

2017 Paper No. 71 Page 13 of 17

military classrooms where they control AI units in a white force role and craft plans for course-of-

action war gaming. The interface was required to leverage improved artificial intelligence that

allowed formations to act in accordance with military doctrine. Tactics relies heavily on an

HTML5-based UI to provide a significant part of its current functionality. Tactics integrates

advanced AI provided by our VBS Control product. This combination provides several interesting

problems:

● How to quickly integrate a local UI component that can render an HTML5 UI?

● How to "serve" the HTML5 UI to the UI component?

● How can we prepare now for a complex integration of VBS Control in the future?

Gears allowed re-use of the HTML5 UI view component that was developed as part of a different

product allowing rendering of an HTML5 UI in a window just like a browser. Gears then allowed

creation of a separate component that serves the actual HTML5 UI just like a normal web server

to the HTML5 UI view. Finally, Gears allowed the already defined and desired AI API to have the

VBS Control implement the API based on the needs of VBS Tactics. The result is a plug-and-play

HTML5 UI viewer, a web server that can serve an HTML5 UI to any web browser, and an AI

component that implements the AI API. BISim estimates a 50% saving of developer cost by re-

use of our Gears-based UI component and integrating the VBS Control AI behaviors instead of

writing a custom AI library.

Figure 3: The VBS Tactics solution components.

The Gears runtime loads all the components for the application and then connects them directly to

each other (peer to peer). There is a component that is dedicated to using all the APIs to make

product APIs, which are aggregates of the component APIs. We also allow all components to

interact in a standard way without necessarily knowing about each other ahead of time. This

provides complete flexibility and modularity.

MODSIM World 2017

2017 Paper No. 71 Page 14 of 17

Figure 4: Gears Peer-to-peer connectivity.

We further found that using our approach, UI can be loaded in consumer browsers (e.g., Chrome)

over the Internet. Microservices components connects with external services and is available to all

cloud applications. Our approach even allows reuse of this integration with these services.

MODSIM World 2017

2017 Paper No. 71 Page 15 of 17

Figure 5: Gears used in the Cloud.

NEXT STEPS

The proposed approach is an open standards-based, modular simulation development framework

designed to meet requirements for ease of use, modularity, extensibility and the ability to maintain

compatibility with legacy technologies. With proper development and adoption, it has the potential

to provide a system of system approach to integrating emerging and legacy technologies

supporting reuse. With an ‘API first’ design to facilitate the development of components that are

modular, re-usable, and safe to refactor we believe that once validated our approach could be a

revolutionary step forward for the simulation industry, drastically improving capability for the

defense industry by optimizing development, reuse and the overall stability of training and

simulation capabilities delivered.

The next steps will involve work to formalize a service API layer that can be shared openly with

industry as a common interface method, helping the industry more easily connect various disparate

technologies and software. As these efforts mature, we plan to look for ways to work with

standards organizations to evolve the technology. For example, Gears has already been proposed

MODSIM World 2017

2017 Paper No. 71 Page 16 of 17

as a standard to NATO organizations currently using VBS and we look forward to continued

collaboration with industry to further our work. Gears, as we are calling this development

paradigm, could help define a new industry standard and help the industry collaborate more

effective, keep pace with commercial innovation and, most importantly, provide relevant

capability to the military.

References

[1] “USAF Looks to SCARS for Cost and Schedule Savings.” (2016, November 28). Show Daily:

I/ITSEC 2016 Official Day New Digest. National Training and Simulation Association. Retrieved

from

http://www.iitsec.org/Documents/IITSEC_2016_show_daily/IITSEC_ShowDaily_Day%201.pdf

[2] Synthetic Training Environment (STE). (n.d.).United States Army Acquisition Support Center.

U.S. Army. Retrieved from http://asc.army.mil/web/portfolio-item/synthetic-training-

environment-ste/

[3] High Level Architecture

https://www.dmso.mil/public/transition/hla/

[4] Common Image Generator Interface Product Development Group. (2014). SISO-STD-013-

2014 Standard for Common Image Generator Interface (CIGI) Version 4.0. Retrieved from

https://www.sisostds.org/DesktopModules/Bring2mind/DMX/Download.aspx?Command=Core_

Download&EntryId=42031&PortalId=0&TabId=105

[5] “Distributed Interactive Simulation.” (n.d.). Retrieved from http://open-

dis.sourceforge.net/DIS.html

[6] Real-Time Innovations. (2014). Data Centric Middleware. 6-8. Retrieved from

https://info.rti.com/hubfs/docs/RTI_Data_Centric_Middleware.pdf

[7] Real-Time Innovations.(2014). A Comparison and Mapping of Data Distribution Service and

High-Level Architecture.” Retrieved from

https://info.rti.com/hubfs/whitepapers/Comparison_and_Mapping_of_DDS_and_HLA.pdf

[8] Richardson, C. (2014). “Pattern: Microservices architecture.” Microservice architecture.

Retrieved from

http://microservices.io/patterns/microservices.html

http://www.iitsec.org/Documents/IITSEC_2016_show_daily/IITSEC_ShowDaily_Day%201.pdf
http://asc.army.mil/web/portfolio-item/synthetic-training-environment-ste/
http://asc.army.mil/web/portfolio-item/synthetic-training-environment-ste/
https://www.dmso.mil/public/transition/hla/
https://www.sisostds.org/DesktopModules/Bring2mind/DMX/Download.aspx?Command=Core_Download&EntryId=42031&PortalId=0&TabId=105
https://www.sisostds.org/DesktopModules/Bring2mind/DMX/Download.aspx?Command=Core_Download&EntryId=42031&PortalId=0&TabId=105
http://open-dis.sourceforge.net/DIS.html
http://open-dis.sourceforge.net/DIS.html
https://info.rti.com/hubfs/docs/RTI_Data_Centric_Middleware.pdf
https://info.rti.com/hubfs/whitepapers/Comparison_and_Mapping_of_DDS_and_HLA.pdf
http://microservices.io/patterns/microservices.html

MODSIM World 2017

2017 Paper No. 71 Page 17 of 17

[9] Hoff, T. (2015, December 4). “Deep Lessons From Google And EBay On Building Ecosystems

Of Microservices.” High Scalability. Retrieved from

http://highscalability.com/blog/2015/12/1/deep-lessons-from-google-and-ebay-on-building-

ecosystems-of.html

[10] Christensen, B. (2013, January 15). “Optimizing the Netflix API.” The Netflix Tech Blog.

Retrieved from http://techblog.netflix.com/2013/01/optimizing-netflix-api.html

[11] The United States Office of the Secretary of Defense Test Resource Management Center.

(n.d). “Test and Training Enabling Architecture (TENA).” TENA. Retrieved from

https://www.tena-sda.org/display/TENAintro/About+TENA

http://highscalability.com/blog/2015/12/1/deep-lessons-from-google-and-ebay-on-building-ecosystems-of.html
http://highscalability.com/blog/2015/12/1/deep-lessons-from-google-and-ebay-on-building-ecosystems-of.html
http://techblog.netflix.com/2013/01/optimizing-netflix-api.html
https://www.tena-sda.org/display/TENAintro/About+TENA

