MODSIM World 2018

Visualization of the Process Interaction Worldview in Discrete Event
Simulation

Thomas Tracey, Brian Dilinila, James F. Leathrum, Jr., Roland R. Mielke
Department of Modeling, Simulation and Visualization Engineering
Old Dominion University
Norfolk, Virginia
ttrac005@odu.eduindilic02@odu.edyjleathru@odu.edumielke @odu.edu

ABSTRACT

A process interaction model is a specific form of modeling paradigm representing the interactions involved in an entity
moving through some specific process. While there exist many ways of viewing and implementing process interaction
models and diagrams, tleedoes not exist a visualization method to denote scheduling and execution of events during
runtime of a simulation. During runtime, the scheduling of events, execution of events, and interactions between
processes are all hidden and unobservable throtighegourse of the simulation. This lack of knowledge about the
underlying processes in action, as well as the events that affect the system state, often hinders the understanding of
the model at hand. This creates problems in teaching and introducingtelievent simulation to students because

there is no visual component of the program that represents the underlying processes occurring during runtime.

The authors propose a visualization approach to displaying the scheduling and execution of ewerdesm
interaction models. This visualization approach highlights event scheduling and execution, as well as interactions
bet ween processes. The aut hsofocssédonrbhelding opmbro dxamplys off poocesst hi s
interaction models by ighlighting triggers, event scheduling, and event execution during process interaction
simulations. The authors found that the development of this visualization method is very useful for highlighting key
factors in process interaction simulations duringtirae.

ABOUT THE AUTHORS

Thomas Tracey is a Senior in the undergraduate Modeling and Simulation Engineering program at Old Dominion
University.He serves as an undergraduate teaching assistant for Modeling and Simulation courses.

Brian Dilinila is a Senior in the undergraduate Modeling and Simulation Engineering program at Old Dominion
University.He iscurrently an intern under Combat Direction Systems Activity Dam Megtesenting NAVSEA at
andproviding assistance to Joint Staff J7

James Leathrum is an Associate Professarthe Department of Modeling, Simulation and Visualization Engineering
at Old Dominion University. He earned the Ph.D. in Electrical Engineering from Duke Univefi#tyresearch
interests include simulation sofare design, distributed simulation, and simulation educatite.e-mail address is

jleathru@odu.edu

Roland Mielke is a University Professor in the Department of Modeling, Simulation and Visualization Engineerin
at Old Dominion University.He earned the Ph.D. in Electrical and Computer Enginedramy the University of
WisconsinMadison. His research interests include system theory, the theory and application of simulation, and
simulation educationHis email address ismielke@odu.edu

2018 Paper No. 59 Page 1 of 11

mailto:ttrac005@odu.edu
mailto:bdili002@odu.edu
mailto:jleathru@odu.edu
mailto:rmielke@odu.edu
mailto:jleathru@odu.edu
mailto:rmielke@odu.edu

MODSIM World 2018

Visualization of the Process Interaction Worldview in Discrete Event
Simulation

Thomas Tracey, Brian Dilinila, James F. Leathrum, Jr., Roland R. Mielke
Department of Modeling, Simulation and Visualization Engineering
Old Dominion University
Norfolk, Virginia
ttrac005@odu.eduindilic02@odu.edyjleathru@odu.edumielke @odu.edu

INTRODUCTION

It is well understood that modelers and simulation developers need to understand the underlying mechanisms that
simulation software uses to manage the simulafoah as how simultaneous events are handled (Schriber, Brunner,
and Smith, 2016). Currently, the standard method for supporting simulation development in observingethel low
effect of these mechanisms is through the use of event traces (SchribererBaud Smith, 2036 Understanding

this relationship is particularly important during the education process of teaching software development of simulation
models. Students have difficulty relating the events identified at the modeling level to thelischand execution

of events as controlled by a simulation executive during softwiavelopment. Collins, Dumaliang, Gonda, and
Leathrum(2017) developed a visualization for the Event Scheduling WorldViewever Leathrum, Mielke, Collins,

and Audett (2017) identified the need to include the Process Interaction Worldview in the educational process due to
the prevalence of simulation tools based on this worldvi€his paper presents a new software tool that provides a
visualization of relationshipdiween the process interaction worldview and the underlying execution of events in the
simulation executive as visualized via an event list and an event graph.

The modeling and simulation development process typically progresses from developing amdtébased on the

system under study, to developing an event or process model that implements the system model, and finally to
implementing the simulation, as illustrated Figure 1for the Process Interaction Worldview. The simulation
implementation coimences with the development of a software model that is then implemented using a simulation
tool, a simulation or general purpose programming language, or even an alternative environment such as a spreadsheet.
Visualizations driven by the simulation uiydend to visualize either the system under study or the system model.

It is suggested here that a visualization of the process interaction in parallel with a representation of the associated
event model is advantageous for use in modeling and sinukadiocation. The authors believe that a process flow

graph representatiasf the process interactia@oordinated with the associated event graph is an appropriate approach

to show how the simulation implements and manages events, thus filling this need.

The approach taken to visualize the behavior of events is to develop a separate visualization tool with the necessary
hooks to drive the visualization from a variety of simulation environments. The visualization includes a process flow
graph for each prass in the process interaction development with interactions between processes clearly identified.
The activities associated to scheduling and execution of events within the process flow are highlighted during
execution. In conjunction, an event graphighlighted to indicate the current state of execution from the event
perspective, and a linear event trajectioighlightsthe history of event execution and the known future events. The
work in (Collins et. al. 2017) found the event graph and evejactray a highly effective representation of the
underlying event execution. The visualization tool provides the capability to control the advancement of the
simulation execution, allowing the developer to step through the simulation or run it attedspheze.

The visualization tool was developed for educational purposes to support a course in-eNsresimulation that

utilizes simulation tools and spreadsheets, and a course on software design for-@listremulations where
simulations areleveloped in a general purpose programming language. As a result, the initial implementation of the
visualization tool is scaled for the class of problems usually studied in an undergraduate academic environment
allowing students to place minimal callsthe visualization tool to notify it of all event schedules and executions and
then observe how their code behaves relative to the model. However, if the use of the visualization tool proves
successful, there are many ways it might be enhanced for talgment and verification of larger scale simulations.

2018 Paper No. 59 Page 2 of 11

mailto:ttrac005@odu.edu
mailto:bdili002@odu.edu
mailto:jleathru@odu.edu
mailto:rmielke@odu.edu

MODSIM World 2018

— 1G]

—

(System Model > — @ @
l7 l Visualization of
Relationship
(Process Model > -«——between Process
o Execution and
l7 + Event Execution
Vehicle
(Software Model)
Truck ‘Car ‘
void SSSArriveEntity*en)y{
Implementation _queue->AddEntityen);
if ((_state==idle) && (!_serverReservaj{

ScheduleEvent(0, new ServeEve(this));
_serverReservedtrue; }

}
Figure 1. High Level View of Discrete Event Simulation Development.

Theremainder of thepaper is organized isix sections. FirstRelated Works are presented thabncernthe process
interaction worldview, visualization of event scheduling and execution, and visual approaches for representing the
relationship between software models and their implementation. Then, the topic of understanding underlying
execution in programimg and simulating process interaction models is discussBifficulties in Comprehending

the Execution of Process Interaction Software. In the third section, the authors present tApproach to Visualization

of Process Interaction Worldview. This sedbn includes a brief introduction to process interaction modeling, and it
includes the author’s approach for visualizing event
Example Process Interaction Model is introduced. The authors vkathrough the example by using figures to provide
visual snapshots of the visualization approach in action. After the exampMistiadization Tool Architecture is
presented. The architecture section explains how developers can integrate their cdde vigthalization approach.
Finally, the authors present thé&onclusion. In this sectionthea u t hpoesesit’and future plans for adapting this
visualization softwaréor educational purposese introduced.

RELATED WORKS

The concept of havingccess to the underlying event behavior is not new. Schriber, Brunner, and Smith (2016)
discuss the concept of interactive model verification. This involves introducing breakpoints into the software or
running an event trace so that event informatioouiput to the developer to assist in verifying that the simulation
behaves as the model specifies. These capabilities are common in d@igergteimulation tools. When combined

with a visualization of the system model, the difficulty is that therenafte layer of abstraction between the model

and the underlying event model that generates the timing of event activity. Therefore, the developer is directly
comparing the si mul at Hewahroslel elkisspaper pposes iotrodica towlevel évent h i g h
model visualization to support process interaction.

Attempts at better displaying the way events are scheduled and executed in different modeling paradigms has also
been explored. Collins, Gonda, Duiaalg, Leathrum, and Mielke (201 Ttroduceda visual representation for

2018 Paper No. 59 Page 3 of 11

MODSIM World 2018

scheduling and execution of events in the discrete event simulation of an event graph. By visually displaying the event
set and event graph while simulating the graph, event scheduling and execution could beddgditfe simulation
advances through each eveihe addition of including the event set visualization synchronized with event execution
allowed users to better understand scheduling and execution of events in a discrete event sifluéatiarpose fo

this paper is the development of a similar approach to displaying event scheduling and execution in discrete event

simulation for educational purposes.

Process flow modeling is a popularodeling paradignfor describing proessoriented system behaviorlt is
commonly used in simulation softwéi@ processoriented simulation languagesch as Arenawvhere a process can

be described as a tinmedered sequence of events that may encompass several activities

(Choi and Kang,i2013)

favored as a modelg paradigm for its capability as an entiigsed modeling formalism, wheseudying only the

activities of entities in the system is of interest

IBM Rational Rose Modeler is an example of a tool that provides insight into the relatio

nship betwasfwtiies

model and the software implementatidhis an objeciriented UML software design tool used for visual modeling

and component construction of largeale software applications. A user creates UML diagrams which are documented
and used to gendeacode. The software was designed to enhance software design and development by emphasizing
the importance of conceptual models and modular software architectures. It also provides a visual representation of
the execution of the model in conjunction wikie software execution. The purpose of this paper is the development

of a similar capability in discrete event simulation.

Similar researcton visualizing a scheduled sequence of activities, past, present, and Hagsiteen conducted on

the capabilityto visualize CPU schedulerSuranauwarat (2007) preserat simulator with
intended to increase wunderstanding on

graphical animation
CPU sadmaprdul i ng

showingstatus and a separate view of correspondihgr@oded timelines. These timelines consist of labeled blocks

with time indicatedabove. This simple yet effective representaioa monst r at es
to other problem domains

the utility of

DIFFICULTIES IN COMPREHENDING THE EXECUTION OF PROCESS INTERACTION SOFTWARE

The difficulty students have with understanding the execution of software implemented using a process interaction
world view is that the software does not behave according to their previous experience with proceduratand obje
oriented programming. Rather than a logical order of execution following a single thread of execution, there are now
multiple processes executing witbrgrol switching back and forth. This is generally implemented through the use

of either multithreding or coroutines. The selection of which process to activate next is based on an underlying event

trajectory from which a simulation executive selects the next event based on scheduled ti

me and activates that process.

Students are classically exposedhe event scheduling world view and develop an understanding of the execution of

eventsthis extra layer of indirection results in confusion.

To support this, the authors utilize a tfedd process carried out between a course in discrete event somwdad a

course in simulation software design. In discrete event simulation, students are exposed

to both the process interaction

world view and the event scheduling world view. In simulation software design, students learn how to develop a
simulationexecutive to select and execute events as well as hioaptement applications using both an evbased
and a procesbased approachThe first step in the process is to show the students how to identify events in a-process

based model. The second dslét them observe the behavior of the process interaction

world view both from the

process based implementation and the underlying eseméduling/execution proces$his paper provides a
visualization to support the second phase of this prodéss project focuses on the learner centeredness learning

theory |l ens, as the approach is tailore

APPROACH TO VISUALIZATION OF PROCESS INTERACTION WORLDVIEW

d on student s

To produe a visualization of the relationship between a process interaction model and the scheduling and execution

of events in a discrete event simulatiam ability to represent both models is developed.

Then each representation

can be animated iparallelto illustrate the relationshipAs an activity is performed on the procéssed model, the

2018 Paper No. 59 Page 4 of 11

I

MODSIM World 2018

corresponding activities in the event model are presentdds approachnvolvesdisplaying and synchronously
animatingthe process interaction model with its copasding event graph aneventtrajectory (a combined
representation of the event history, currently executing event, and set of scheduled future events)

Process Interaction

Multiple approaches can be used to represent and define the management oPegeass interaction is a prominent
worldview where the system is represented as a set of processes capable of performing logic to enact system state
changes and passing time by either delaying for an amount of time or waiting for an interaction fren@oocess.

This worldview is popular in discrete event simulatiools such as Aren&poi andKang, 2013) where processes
arevisually represented as process bladkss utilized when it is necessary to observe and understand how different
processes interact over time.

The authors have opted to represent the process interaction model as a set of process flowcharts with associated
interactions identified. The reasdor this is there is a clear relationship between the process flowchart and the
software implementing it. In a process flowchart, blocks represent either a process to pedatatision block
(e.g.conditiong to control the logical flow of executioftach block has incomingrcs and amutgoing arc which
facilitate signal flow through the proces&pecial case® support process interactionnc | ude “ Wai t f or
trigger arcs. “Wait for?” bl oc ks < duratiata haedle she passage of t in
simulation time Trigger arcsare arcs from one process to anothetivating the triggered process $gheduihg an
associate@vent to occur immediatelyMultiple blocks within a process flowchart can belong gingle event.

Studentsare requiredo understandhe relationshifpbetweenthe simulation execudh and the flowchart.Students
create a graphical model (the process flowchart) to underttanstegby-step process of individual processes and
their interation. This model generallycan be mappeéasilyto a software implementationFigure 2 shows an
example process flowchart modet a simple server/queue modalote the special gray blocks indicating the passage
of time and the dashed arcs indicatinge @rocess triggering anothemhe examplesystem involves a process to
model a source to create entities with an interarrival time between creations, and a process to nodektedobicy ' s
moving through the server/queuEhus,the source periodically creates a nhew entity, initiating its process. The entities
execute the server logic, waiting for a server to become availalhdéa triggered that a server is available, delaying
for a service time, and then prior to departuriggring the next entity in the queue that a server is available.

The next step the student performs is to identify the events associated with the processes. This is done by finding the
points in the processes where the process is activated after vi@itargoutside influence, either the passage of time

or a trigger from another process. Thus, the output arc from each gray block indicates the beginning of the logic for
a new event, and all logic reachable from that point until entering a new gr&yrbégcbe logically organized as a

single event. In Figure 2, one event is defined for the source process (Create Entity) and three events are defined for
each entity process (Arrive, Start Serve, and Done Serve). Students then identify the schedutiag ecthe
processes. These occur on gray blocks where a predefined time delay is provided (the blocks that wait for the
interarrival time and the service time in the example), or a trigger between events (the arc from the source to the entity
activatng the entity process and the arc from one entity back to the next in line activating it for service).

When visualizing the execution of events, the process blocks must be highlighted synchronously with their
corresponding events. This is done to shovictviprocesses belong to which events as well as which processes
schedule which events. State changes are visualized with the execution and the scheduling of new events. This project
follows the route of visualizing groups of blocks so the student mayr hettkerstand the relationship between the

event graph and the process flowchart. Another reason to do this, rather than visualize the sequence of process blocks,
is to reduce the amount of effort required on the part of the developer. This is donéneoggEnt across rather than

to overwork the student develop&igure 3shows the difference between visualizing the sequence of process blocks
(left) and visualizing groups of process blocks with their corresponding event.

2018 Paper No. 59 Page 5 of 11

MODSIM World 2018

Source

e
.
v,
Q
9 .
Q .
g -
g Arrive
Q)i
—
T
g,
o .
Create Entity P ~]— X =
. Request service
; nal
i : (add to queue)
L l
Wait for tia : :
\/ N ">: I
. =
L C I
- Q
Create Entity . Start Serve g |
: 2 |
. Wait for ts g
. 20 |
4 B
. |
: I
: I
: I
. Done Serve I
. I
. Grant request to _|
¢ next in queue

Figure 2. Example Process Flowchart. Adapted from “Proposed Unified Discrete Event Simulation Content
Roadmap for M&S Curricula” by J. F, Leathrum, Jr. et. al., 2017. 2017 Winter Simulation Conference.

Visualization

The approach for visualization is to individually representpifeeess flowchart and the event scheduling/execution.

To represent the event scheduling/execution, the authors utilized past successful experience with event graphs and
event trajectories (Collins et. al. 2017). The event graph provides a graphicaérggtien of events. Each event is
represented by a node in the graph with associated state change logic. Arcs between nodes represaralailitgvent

to schedule another eveatta scheduled futuréme. Arcsalsocan be labeled as conditional to megent logic within

the scheduling event. The event graph representing the process flowchart in Figure 2 is provided in Figure 3.

2018 Paper No. 59 Page 6 of 11

MODSIM World 2018

G/G/1 Server-Queue

{Q++} {Q--; B~} {B++}
) - /"'-__ o /"-__ __-""\\ /"-__ T,
Voo / : \ 0 [st rt\'- ts .-“(/ End | O .-“’/ \‘\
Generate _.- Arrival J,-'IE]H"- Service }_a'_h'\ Service ;'_H'- i ;l

/ % AN N4

- — - — — —

Ao J

(Q>0)

State Set: {Q(t), B(t)}
Event Set: {Generate (G), Arrive (A), Start Service (5), End Service (E), Depart (D)}

Figure 3. Event Graph Representation of the Process Flowchart in Figure 2.

With the provided visuals, the technique usedisualize behavior is to have the software driving the visual send a

signal to the visual each time an event activity occurs, either starting the execution of an event or the scheduling of a
new event. When a new event is executed, the associated bidbtle process flow are highlighted green as are the
associated node in the event graph and event in the event trajectory. When an event is scheduled, the associated arc
in the process flow is highlighted red as is the associated arc in the event lgragalalition, the process blocks for

the scheduled event are highlighted blue and a new blue event is inserted in the event trajectory and outlined red.

Figure 4 shows the developed GUI provided by the project te@monstrating the server/queue systémuser

defined netlist filedefines the graphics for the process flow on the left and the event graph on the bottoffigght

GUI also provides functionality to allow the user to control the execution of the software driving the visualization. It
allowsthe user to single step through the event activities one at a time. Alternatively, the user can define a delay
applied to each step to allow continual execution at ahateallowsthe student to observe behavior over time.

StartSrc ArrSrv

e wr v ST ar opt

. ——c
r More? ——= DoneSrc Busy? —1—t ReqSrv

[e SetBusy a—J

— Wamﬂ- WaitSv'I'Ij

Setldle

GrantReq =

DepSrv Hext Step.

Automatic Mads

St Ao Tmes

Figure 4. Visualization Tool Illustrating the Server/Queue Model from Figures 2 and 3.

2018 Paper No. 59 Page 7 of 11

MODSIM World 2018
EXAMPLE PROCESS INTERACTION MODEL

In this section, an example of the GliBualizationis provided.To help studentsetterunderstand process interaction,

the GUI advances through each step to show wiregeentity can make triggete activate the process of anothér.

this example, the simulation has advanced to time t = 5.99 units. Multiple entities have already begnacreed

to the server, and completed service. At least one entity, éhtiy currently waiting in queue and is requesting

service. Meanwhile, entitiyl completes its service. IRigure 5the Depart event for entityl executes. The state of

the system changes with the server becoming Aflentity M departs, it grants a request to the next entity in line to

execute its procesBigure 6demonstrates the scheduling of a Start Service event that occurs as a raditit bf e

triggering entityN' s pr ogr ess. The outward arc from “Grant Req”
scheduled Start Service event is scheduled to happen in zero time.

G

StartSre ArrSrv
e | nema sz e sz pp— [swim | o
More? = Donesrc < Busy? =1+ ReqgSw

L l

Wamm Waﬂvm

Dens Wt i

Jutnrurt Wk

st e

Figure 5. At t = 5.99 Units, Entity M Departs.

StartSre AnSry
P T cam | rem | coww | cwew | s | ceem
—= o
Mare? *——F DoneSre Busy? “—f—F RegSry

Createfnp =—=—m——=m—m—m———f SetBusy Q-J

DepS et

st vode

ot tute Trar

Figure 6. At t = 5.99 Units, the Departing Entity M’s Process Triggers Next Entity in Line to Begin Service.

2018 Paper No. 59 Page 8 of 11

MODSIM World 2018

Figure 7shows that entityN now continuesits processat the Start Service eveekecution The server returns to
being busy.Entity N continues its servictr a given time distribution.

CECIE

(m————

StartSrc ArrSry
| sams1 e saom o . ez s v sl
! l = e e e EE Er
&
More? ~——=C DoneSrc Busy? —T1—%F

| | _
! EE— ﬁ{
-

Setldle

l

GrantRegq =

l

DepSny et Sies
=

et it -

Figure 7. At t = 5.99 Units, the Triggered Entity N Continues its Process and Begins Service.

Figure 8shows thathe Start Service event also schedules a Depart.eveithe bl ock “Wai t SvTi me”
block; therefoe, it schedules the event Depart to occur at 8.39 time units.

G

StartSre ArrSr
s ST wwarm = 1 awan sz s R4
! 1 A -3 - SR SR A O S

More? —~———CG DonaSrc Bugy? ~—T—*t ReqSrv

- i
|

WaltIA]

Setldle

1

GrantReq =<

1

DepSev e Shen

(RS

ez v

Figure 8. At t = 5.99 Units, the Event Start Service Schedules a Depart Event at t = 8.39 Units.

VISUALIZATION TOOL ARCHITECTURE

Three main components are needed to allow the Gtidramunicate with the simulation: the parser file (netlist), the
executable for the DESVisualizer G{Bluilt using Q}, and preparation to be completed fordleeeloper's application

2018 Paper No. 59 Page 9 of 11

MODSIM World 2018

to send updates to tl@@UI. The system architectuie shownin Figure 9 Requests are sent from the developer
application software to the visualizatioBeparatelyefined requests for event execution and event schedaleng
utilized tonotify the visual of the activity being performexhd the API provided to the devedpvaits for a response
from the visual before allowing the application to contin@updatecompletion and the ensuing predefined delay
or responséime ofthe user, a reply is sent back to the API, allowing the application program to continuecgxecuti

From the developer’'s applicat i othatisviduaized by the GUA. tNotethat f ol | 0
should the developer’s application not behave correctly
Thus notonly can the developer observe the relationship between his code and the model on which it was developed,
he can utilize it to debug the behavior of his code.
DESVisualizer::Parse(fileName)
Input File,
Description of
Process Flow Chart &
Event Graph
} |
>— =3 T
1|
s .
un I O,
| - ~_
|
graphRenderArea->highlightEvent(...) " graphRenderArea->highLightArc(...)
listRenderArea->executeEvent(...) x listRenderArea->scheduleEvent(...)
processRenderArea->highLightProcess(...) processRenderArea->highLightArc(...)
| DESVisualizer:
e ~
Handle Request, Handle Request,
L Event Execution Event Scheduling Request and Signal Threads)
T T Tt “oF--- SEEh SRR EEEE !
1
1 Send Update Send Send Update :
' Reply 1
L e e ceeo S U S A Pipe,
Send Action, Send Action, Event
Event Execution Scheduling
L FilelO AP
Send Update end Send Send Update
(Next Event Executed eply Reply (Event Scheduled
in Future Event List) Continue) (Continue) in Future Event List)
— Simulation's Event List——
Application
Figure 9. System Architecture of DES Visualizer Interacting with a Developer’s Application and Netlist File.
To enable visualization of students’ simulation softwa

This requires the studentaald the update calls to the visualization as denoted in Fguféis involves identifyig

the start execution of each event and the scheduling of each event. Example code is provided 10 féigtine
process involved to implement the entity from Figure 2. The code is highlighted to clearly identify the relationship to
Figure 2. The evds are color coded as Arrive everturquoise, Start Serve evengreen, and Done Service event
—magenta. The grdy Wa i tblaksarid triggersorrespond with the gray highlighted code in Figl@e Finally,

the update calls to the visualizatiomltare highlighted yellow in the code.

Thetakeaway from the example code is the simplicity of adding the updates to theTdwsstudent must clearly
identify the corresponding events in the processes as annotated in Figure 2. With the corresponding code identified,
a call to OutputExecuteEvent is made to notify the visualization that the next event is being executeaamheofor

2018 Paper No. 59 Page 10 of 11

MODSIM World 2018

the three events in the entity’s processes. This res
executed by updating the highlighted portion of the process flow, event graph, and event trajectory. In addition, each

time a newevent is scheduled, either by waiting for a specified time (a wait for actidoy a process being triggered

by another (a grant request action), an OutputScheduleEvent call is made to alert the visualization to highlight the
edges in the process flowmcevent graph corresponding with the scheduling and to add the newly scheduled event to

the event trajectory.

/Ibegin Arrive Event

OutputExecuteEvent(1, GetCurrentSimTime());
Q++;

/lend Arrive Event

if (1 >0){

_queue.Request(entityGetTrigger()):}
OutputScheduleEvent(2, GetCurrentSimTime() + 0);
/Ibegin Start Service Event
OutputExecuteEvent(2, GetCurrentSimTime());
Q-1
Time tService = _serviceTimeGetRV();
OutputScheduleEvent(3, GetCurrentSimTime() + tService);
/lend Start Service Event
entity->WaitFor(tService);

/Ibegin Done Service Event
%putExecuteEvent(B, GetCurrentSimTime());

if (Q>0){
_queue.GrantRequest]);
/lend Done Service Event

Figure 10. Entity Process Source Code.

CONCLUSION

Thevisualization presented in thp@per is currentlpeingf i el ded wi t hin ODU’ s Modeling
In the current academigear, thevisualizationis being used at both the graduate and undergraduate level as a
demonstrabn tool in clasgo assiststudents u n d e r stheaomagptsrbgiill oot be placed in their handstil

further testing is completedThe demonstration will consist of thésualizationrunning together with an already
completed DES simulationln the next academic yeastudents will utilize the GUih conjunction with their own

codeto better understand their programs as well as the relationship betwegmrdbess interactiomodel and the

event graph. The authors are confidettiat students will benefit from the use of this visualization tmded on
experiences with the work in (Collins et. al. 2017).

REFERENCES

Leathrum, J. F., Mielke, R. RCollins, A.J. &Audette, M. A,(2017) . “Proposed Unified Dis
Content Roadmap ROATWind&isulatian Conference (WEC).”

Collins, S. C., Dumaliang, L. C., Gonda, N. D., Leathrum, J. F. Jr., & Mielke, RORY “ Vi sual i zati on ¢

Execution i n a DbehAmealtSiemulaBon &ymposiurs(ANSS 261/, 2017.
Choi, B. K., & Kang, D. (2013)Modeling and Simulation of Discrete-Event Systems, Hoboken, NJ: John Wiley &
Sons.
| B MIBM Rational Rose Modeler” retrieved Dec. 12, 2016, from http://www
03.ibm.com/software/products/en/rosemod
Schriber, T.Brunner D. & Smith, Inside DiScreteEvent Simulation Software: How it Works and Why it
Ma t t e Preceedingsiofrthe 2016 Winter Simulation Conference, Dec. 2016.
Suranauwar at , S. (2007) . “ A CZ0J 378 Anhual d-roitiérsnliy Edubdtiano r i t h m
Conference — Global Engineering: Knowledge Without Borders, Opportunities Without Passports, 2007.

2018 Paper No. 59 Page 11 of 11

