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ABSTRACT

The availability of computing power now allows for computation methods that seemed expensive in the past. This enables
the exploring of synthetic population characteristics while running simulations at the individual level. Specifically, it is now
possible to generate synthetic populations that mimic population statistics of published epidemiological data and to explore
hypothetical scenarios. This work shows how Evolutionary Computation (EC) techniques can be used to create a population
occurrence model that projects possible treatment effects on population outcomes using characteristics that are intrinsic to the
population. We demonstrate how EC is used to extend a previous solution to the population disease occurrence model and
generalize it. This exploration reveals the need for epidemiological experts to provide additional information to accompany
publication of population statistics to support machine comprehension. 
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INTRODUCTION 

Moore’s law has been driving the exponential growth of computing power for over half a century (Moore, 1965). For the
price  of  one  hour  of  work,  it  is  possible  today  to  buy sufficient  computing power  to  perform computations that  were
considered unreasonable last century. With this computing power, it is possible to simulate many individual entities within a
population or employ time consuming algorithms to better understand the properties of populations. 

In turn, the population modeling field has recently advanced from modeling population cohorts to modeling individuals.
Numerous examples  of  such modeling (Population Modeling Working  Group,  2015,  2016,  2017)  require  generation  of
synthetic  populations to model  reality.  Medical  data are typically  restricted and therefore  less available for  researchers,
mostly due to privacy issues, yet is widely published as summary data in the literature. Many examples can be found in
clinical trials that are now aggregated according to US law in ClinicalTrials.Gov (ClinicalTrials.Gov, Online). The Reference
Model (Barhak , 2015) is one example where information from many clinical trials is modeled to fit their published statistics.
This is possible due to the MIcro Simulation Tool (MIST) (Barhak, 2013) that can receive population statistics that can
contain inclusion and exclusion criteria to handle skewed distributions that are common in clinical trials. For example, MIST
can generate an artificial population of individuals that match the mean age and its standard deviation of the population for a
trial with a minimum age requirement. 

This work extends the scope of population generation to handle more complex constraints that allows extracting indirect
information from the synthetic population in order to project the effect of treatment of a population. We name the type of
solution Population Disease Occurrence Model (PopDOM).

POPULATION DISEASE OCCURRENCE MODELS OVERVIEW

This model was first suggested by Olaf Dammann who asked for assistance from the population modeling working group.
Without losing generality, we will explain the technique using the same problem shown in (Dammann, Chui and Blumer,
2018) where an initial solution appeared. 

Known:
In a  population of  N=617 preterm infants,  where  P1=32% are  with Sepsis,  P2=75% get  Oxygen,  it  was  observed  that
P3=47% reached the outcome of Retinopathy of Prematurity (ROP) (Chen, 2011). The odds ratios between parameters and
outcomes were O12=Odds(Oxygen,Sepsis) =2.6, O13 = Odds(ROP,Sepsis) = 2.8,  O23 = Odds( ROP,Oxygen) = 3.6,   

To be solved:
A new treatment is introduced that reduces the occurrence of sepsis from P1=32% to a lower value P1* = 16%. Assuming
that  the  odds ratios  and the  oxygen probability  represent  biological  constraints  that  do not  change,  what  would be the
resulting prevalence (percentage) of ROP? 

Solution: 
To solve this problem, let us first analyze the problem and explain some elements there. Parameters  Xi in the problem, are
Boolean parameters for each individual, where i=1..3. Parameter Xi for individual k =1..N can be either 0 or 1 and we can
write it as Xik. The probability of a parameter i is simply defined as Pi  = #(Xik=1)/N where # represents the count operator.
The odds ratio of two parameters i,j defined by the following equation: 
Oij= #(Xik=1 & Xjk=1)* #(Xik=0 & Xjk=0) /  (#(Xik=0 & Xjk=1)* #(Xik=1 & Xjk=0))
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Since Xik parameters are Boolean, we can look at the problem from the cohort perspective where group Gabc={X1k=a & X2k=b
& X3k=c}. So for this 3 parameter problem, there are 8 groups: G000, G001, G010, G011, G100, G101, G110, G111. We will denote the
size of group Gabc as #Gabc. We can also write the odds ratios by replacing #(X1k=1 & X2k=1) with #(X1k=1 & X2k=1  & X3k=0
or X1k=1 & X2k=1  & X3k=1 ) which is equivalent to (#G110+#G111). We can do the same for all other elements.  

The solution offered in (Dammann, Chui and Blumer, 2018) is to solve the problem by writing equations for the sizes of each
group. Let us start  by following in the same path.  The given known elements account  for 7 equations,  3 equations for
probabilities, 3 equations for odds ratios, and 1 equation to account for population size. 

1. P1 = (#G100+#G101+#G110+#G111) /N
2. P2 = (#G010+#G011+#G110+#G111) /N
3. P3 = (#G001+#G101+#G011+#G111) /N
4. O12 = (#G110+#G111) *(#G000+#G001)/ ((#G010+#G011)*(#G100+#G101)) 
5. O13 = (#G101+#G111) *(#G000+#G010)/ ((#G001+#G011)*(#G100+#G110))
6. O23 = (#G011+#G111) *(#G000+#G100)/ ((#G001+#G101)*(#G010+#G110))
7. N = #G000+#G001+#G010+#G011+#G100+#G101+#G110+#G111

Since there are 8 unknown values for  #Gabc and 7 equations, it leaves one degree of freedom for a solver to calculate the
group counts. In the solution in (Dammann, Chui and Blumer, 2018) another assumption was made to account for the 8 th

equation to allow a solution for this problem. The added assumption kept constant ratios involving outcome and risk factor
group and was added outside the formal definition of the problem. Since the assumption was not based on a given constraint
and although may be reasonable, it may not represent reality. In this paper we will avoid this assumption and explore the
multiple population distributions possible. 

Moreover, the solution given in (Dammann, Chui and Blumer, 2018) has only D=3 underlying parameters: Sepsis, Oxygen,
ROP and 8  unknowns.  The solution  space  for  this  problem grows  exponentially  with  the  number  of  parameters  –  16
unknowns with 4 parameters and  2D unknowns for  D parameters. With the simple problem given with 3 parameters, it is
possible  to  compute  all  possible  permutations  on  a  modern  computer  to  find  all  #Gabc combinations  that  make  sense.
However, if we have the same problem with more parameters, the number of degrees of freedom will increase and solution
may not be practical,  especially if some information such an odds ratio is not given. However,  a solution that explores
distributions may provide better insight on the problem. Therefore, we chose an Evolutionary Computation (EC) solution that
can cope with large solution spaces. 

POPULATION GENERATION USING EVOLUTIONARY COMPUTATION

The EC solution chosen is a type of Genetic Algorithm. The idea is that the EC solution generates a population of candidate
solutions. Each candidate solution is a population of individuals that may solve this problem given. To avoid confusion, note
that we generate a population of populations. The quality of the solution is determined by a fitness function that quantifies the
error of the solution from the ideal population. In this work the fitness function is of the form:

Fitness(s) = W1|Pi – Pi’|+ W2Oij – Oij'|

Where W1, W2 are constants and Pi’ and Oij' are the probabilities and odds ratios of the candidate solutions. The ideal solution
will result in a zero value for the fitness function. 

The EC solution walks through these main stages:
1. Generation: A population of random solutions is  generated.  In this problem, each solution  s consists  of D x N

random numbers Xik ~ Bernoulli(Pi) where i=1..D , k =1..N and Pi is the probability given – while odds ratios are
initially ignored. These are the initial conditions for the problem. 

2. Evaluation: Where Fitness(s)  is calculated for each solution s 
3. Selection: Where the best solutions are ranked and selected to represent the next generation
4. Variation: Where the selected solutions undergo mutation and crossover operators to create another generation –

consisting of a population of solutions. The operators defined in this work are:
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a. Cross-over:  from a pair  of  mother  and  father  solutions  s1= {Xik} and  s2 = {Yik} create  two offspring
solutions such that  s3 = { Xik if Rk=0 , Yik if Rk=1}, s4 = { Yik if Rk=0 , Xik if Rk=1} where Rk~Bernoulli(0.5)

b. Internal Swap Mutator: swap a single parameter value Xi between two random individuals k and h in the
solution so that these two values are swapped: Xik   Xih . Do this for each individual k  if Uniform(0,1)< R
where R is the mutation rate.

c. Reroll Mutator: regenerate the individual Xik  in solution s, Xik ~ Bernoulli(Pi) where i=1..D , k =1..N . Do
this for each individual k  if Uniform(0,1)< R where R is the mutation rate.

5. Termination: where a stopping criteria is checked – in this paper the algorithm stops after  a certain number of
generations is reached. If a stop criteria was not reached, the EC algorithm goes back to step 2

6. Post termination, the most fitting population is considered the answer

Since there is randomness involved in several stages of the EC algorithm, the solution may have random elements. Therefore
to get a better understanding, the EC algorithm simulation was repeated several times to show a distribution of results. 

However, it is important to point out that the EC algorithm, unlike an analytic solution, will take into account the discrete
nature of the problem. In a population of 617 people, there is a finite number of combinations of how groups Gabc are formed
and each one of those groups will have an integer rather than a real number with a fraction to represent the solution. This type
of constraint is hard to solve analytically, yet the EC algorithm incorporates this into its solution and it is likely that the
fitness of those solutions will not be the same, so given enough time, it is likely that the discrete nature of the problem will
lead to a specific solution – even though many solutions are possible that are very close to the given numbers. 

It is also important to note the problem itself is somewhat ill defined since epidemiological studies rarely report exact number
with high precision. If high precision numbers would be reported, it would perhaps be possible to find the exact population
that matches all the statistics provided since the discrete nature of the problem would point to a specific solution. However,
when the numbers given as imports are truncated to a certain precision, it may add some uncertainly if there are several close
solutions. However, from the epidemiological perspective, the epidemiological study that created the input numbers has some
statistical variation and if repeated, it may not provide the same numbers. Therefore, we are still interested in distribution of
close results that the EC solution can provide. 

However, so far the focus was on generating a population that matches statistics whereas the problem tries to calculate the
effect of treatment. The next section will address this important solution step.

POPULATION DISEASE OCCURRENCE MODELS USING EVOLUTIONARY COMPUTATION 

The naive solution for the original problem has two population generation steps:

Step 1: Generate a population that matches the original untreated population statistics using EC. 
Step 2: Generate a  population with the estimated treatment  effect  as a constraint  while removing the constraint  on the
outcome. 

Table 1.  Parameters for the naive solution using two population generation steps.

Solution
Step

N P1

Sepsis
P2

Oxygen
P3

ROP
O12

Sep/Oxy
O13

Sep/ROP
O23

Oxy/ROP
Step 1 617 0.32 0.75 0.47 2.6 2.8 3.6
Step 2 617 0.16 0.75 ? 2.6 2.8 3.6

Table 1 shows the parameters to be used in each step of the solution.  Note that the question mark in the ROP in step 2
creates some ambiguity since some probability needs to be given to the initial solution generator of the EC. For the purposes
for  generating  the  initial  population,  the  step  1  probability  is  used  for  ROP.  However,  there  is  no  constraint  on  this
probability during evolution and it is allowed to drift to get a new value that will match all other constraints. 
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If we recall the analytic solution with 8 unknowns, we can see that step 1 has one degree of freedom. However, if we try to
calculate the population for step 2, there is another degree of freedom added since the ROP outcome is no longer a constraint.
Therefore, there are two degrees of freedom. Also note that the naive solution does not have any connections between the
steps, in fact step 2 can run before step 1 so step 1 seems to be redundant. Due to the degrees of freedom in solution, it is
unclear  if  the  populations  generated  actually  provide  a  solution.  In  fact  when  running  simulations  this  way,  some
unreasonable results appeared where ROP did not improve as expected due to the two degrees of freedom allowed in step 2. 

Therefore,  a slight variation was introduced in this solution to pass information between the two steps. To help do that,
another new measure was introduced. We call it division ratio. The division ratio between two parameters is defined as Rij =
#(Xik=1 & Xjk=1) /  #(Xik=1 & Xjk=0) which is a subset of the odds ratio calculation. This artificial calculation will help us
figure out the missing degrees of freedom that we will transfer between the two steps assuming that those values will remain
the same. The population disease occurrence solution will therefore be formulated as follows.

Population Disease Occurrence Model Algorithm

Step 1: Generate a population that matches the original untreated population statistics using EC. Extract invariant properties
from the solution.
Step 2: Generate a  population with the estimated treatment  effect  as a constraint  while removing the constraint  on the
outcome and applying the invariant properties as additional constraints. 

Table 2.  Parameters for the population disease occurrence model 

N P1

Sepsis
P2

Oxygen
P3

ROP
O12

Sep/Oxy
O13

Sep/ROP
O23

Oxy/ROP
R12

Sep/Oxy
R13

Sep/ROP
R23

Oxy/ROP
Step 1 617 0.32 0.75 0.47 2.6 2.8 3.6 ? ? ?
Step 2A 617 0.16 0.75 ? 2.6 2.8 3.6 ? ? ?
Step 2B 617 0.16 0.75 ? 2.6 2.8 3.6 ? ? Step 1
Step 2C 617 0.16 0.75 ? 2.6 2.8 3.6 ? Step 1 ?
Step 2D 617 0.16 0.75 ? 2.6 2.8 3.6 ? Step 1 Step 1
Step 2E 617 0.16 0.75 ? 2.6 2.8 3.6 Step 1 ? ?
Step 2F 617 0.16 0.75 ? 2.6 2.8 3.6 Step 1 ? Step 1
Step 2G 617 0.16 0.75 ? 2.6 2.8 3.6 Step 1 Step 1 ?
Step 2H 617 0.16 0.75 ? 2.6 2.8 3.6 Step 1 Step 1 Step 1

Table 2 shows the parameters to be added as input. The division ratio parameters are not given and need to be extracted from
the solution. Therefore step 1 is important since it calculates unseen values that determine how the groups are formed and the
division ratios calculated there can be used in step 2. However, the question is which of the 3 division ratios should be used
in step 2, in other words, which one actually stays invariant between solutions. Since no information is provided, it was
decided to check all possible variations and therefore 8 different step 2 strategies can be executed marked with the letters A-
H. In each one of those simulations a different one of those values is transferred from step 1. Since we execute step 1
multiple times, we transfer the mean value calculated from multiple simulations. 

Strategy C seems to be the most intuitive one since it  ties between the sepsis parameter which was treated to the ROP
outcome. However, we also wanted to see what happens when another single division ratio is kept stable and strategies B and
E show this. However, note that even if we transfer one invariant from Step 1, there is still a degree of freedom if writing the
equations and multiple solutions are theoretically possible. Therefore strategies D,F,G that use extra two division ratios from
step 1 are used. We also wanted to see what happens if the problem was over constrained and we transfer all 3 division ratio
values from step 1 to step 2 – strategy H handles this situation. Note that strategy A provides a reference of what happens if
we do not constrain any of the division ratios.

Since we do not have additional information on the problem, we are exploring different paths to see possible behavior. The
division ratios introduced here are artificial constructs. If an epidemiologist could provide another constraint that would be
kept between step 1 and step 2, it would help. However, even with these artificial constructs we are able to gain some insight
to the problem as the results suggest.
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RESULTS

Step 1 of the simulation involves calculating the population as close as possible to the target constraints in Table 1. Table 3 
shows the results statistics after repeating the EC calculation 100 times. There was one result that was dominant in 98 
simulations marked as Sol 1 and two other results Sol 2 and Sol 3 that appeared once in 100 repetitions that may be 
considered outliers. The system calculated the average for the odds ratios and passed those to step 2 of the solution. 

Table 3.  Step 1 Results – numbers are rounded to 3 digits for display

N P1

Sepsis
P2

Oxy.
P3

ROP
O12

Sep/Oxy
O13

Sep/ROP
O23

Oxy/ROP
R12

Sep/Oxy
R13

Sep/ROP
R23

Oxy/ROP
Target 617 0.320 0.750 0.470 2.600 2.800 3.600
Sol 1 (98) 617 0.319 0.750 0.468 2.587 2.798 3.614 6.036 1.775 1.184
Sol 2 (1) 617 0.319 0.749 0.473 2.616 2.804 3.601 6.036 1.814 1.211
Sol 3 (1) 617 0.313 0.752 0.470 2.600 2.793 3.597 6.148 1.797 1.189
Average 617 0.319 0.750 0.468 2.587 2.798 3.614 6.037 1.775 1.184

Figure 1.   Simulation results for all strategies for different treatment levels. Lines represent average of 100 repetitions
while points represent the individual results of the 100 repetitions. The legend on the right represents colors used

The average division ratios highlighted in yellow were passed as parameters to simulation step 2 strategies A-H. The 
simulation for all strategies A-H was executed for different treatment levels we enumerate from 0 to 12 that reduce sepsis 
from 0.32 for treatment level 0, to 0.08 in treatment level 12, in steps of 0.02. Figure 1 shows the effect of treatment on 
output population statistics. The image shows 100 repetitions of simulation for each parameter participating in simulation. 
The color legend to the right represents the meaning of each series data by color. Solid lines represent average of 100 
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repetitions while points represent separate repetitions, so variation is visible. The difference between the different categories 
is clearly visible. Strategies A and B have the most variation of the ROP outcome since the constraints are not associated with
the change in sepsis indicated by the red markers that are decreased. Other strategies produce different results. Also note that 
odds ratios and the oxygen probability were kept more or less steady with a few exceptions in strategies B, D, F, H near the 
final treatment level. One possible explanation is random behavior, yet those strategies have a constraint on the division 
ratios of ROP:Oxygen that is part of the odds ratio of the ROP:Oxygen, so the visible variability may indicate the difficulty 
of the system to comply with all constraints while changing the sepsis – in other words, the more sepsis is lowered, it is 
harder to find solutions to comply with all constraints and even if there is an optimal solution, the system may need more 
computational effort to find it so the spread of possible solutions widens. Also note that the more we decrease sepsis, we will 
eventually reach a limit where it is impossible to find a solution that fulfills all constraints and the system will find the closest
solution it can. This is visible looking at strategy H where we would have expected to see parallel lines in all measures except
from the oxygen and ROP probabilities – however instead we see a slight drift in most lines. Recall that solution H represent 
a situation where there are more equations than parameters to compute so the slight variation in all measures can be viewed 
as the best compromise the system can find to satisfy the over-constrained problem.   

To numerically represent results, we extracted the solution for the last treatment level where sepsis was reduced to 0.08 - a
quarter of the initial value. Table 4 shows the numeric results, while table 5 shows the deviation of each strategy from the
constraints.

Tables 4 and 5 reveal that in most cases, odds ratios changes are minimal while division ratios are more volatile which makes
sense due to the formula construct. Each strategy selected seems to have trade off in accuracy of certain constraints while
strategy H seems to be spread the inaccuracy between all parameters which makes sense as it is more constrained than other
solutions. So unless a medical expert  provides some additional criteria for solving the problem in step 2, perhaps the H
strategy can be used to give a moderate result.

Table 4.  Step 2 Results per strategy – numbers are rounded to 3 digits for display

Strategy P1

Sepsis
P2

Oxygen
P3

ROP
O12

Sep/Oxy
O13

Sep/ROP
O23

Oxy/ROP
R12

Sep/Oxy
R13

Sep/ROP
R23

Oxy/ROP
Step 1 Ref 0.080 0.750 0.470 2.600 2.800 3.600 6.037 1.775 1.184
A 0.081 0.750 0.470 2.592 2.799 3.590 7.328 2.303 1.198
B 0.081 0.716 0.466 2.537 2.799 3.606 6.015 2.265 1.231
C 0.081 0.750 0.409 2.589 2.803 3.623 7.326 1.782 0.916
D 0.084 0.719 0.412 2.528 2.801 3.601 6.084 1.795 0.962
E 0.081 0.750 0.475 2.590 2.794 3.584 7.331 2.332 1.215
F 0.083 0.728 0.466 2.396 2.803 3.601 6.030 2.248 1.203
G 0.081 0.749 0.431 2.594 2.784 3.597 7.276 1.945 1.010
H 0.084 0.715 0.430 2.553 2.795 3.600 6.010 1.939 1.050

Table 5.  Step 2 Deviation from reference per strategy – numbers are rounded to 3 digits for display

Strategy P1

Sepsis
P2

Oxygen
P3

ROP
O12

Sep/Oxy
O13

Sep/ROP
O23

Oxy/ROP
R12

Sep/Oxy
R13

Sep/ROP
R23

Oxy/ROP
A 0.001 0.000 0.000 -0.008 -0.001 -0.010 1.291 0.527 0.014
B 0.001 -0.034 -0.004 -0.063 -0.001 0.006 -0.022 0.489 0.047
C 0.001 0.000 -0.061 -0.011 0.003 0.023 1.289 0.007 -0.269
D 0.004 -0.031 -0.058 -0.072 0.001 0.001 0.047 0.020 -0.223
E 0.001 0.000 0.005 -0.010 -0.006 -0.016 1.294 0.556 0.030
F 0.003 -0.022 -0.004 -0.204 0.003 0.001 -0.007 0.473 0.019
G 0.001 -0.001 -0.039 -0.006 -0.016 -0.003 1.240 0.170 -0.174
H 0.004 -0.035 -0.040 -0.047 -0.005 0.000 -0.027 0.164 -0.135

2019 Paper No. 0014 Page 7 of 10



MODSIM World 2019

A medical expert may immediately look at the ROP column, marked in yellow, to see how much an outcome is improved
when a  modeled  treatment  is  assumed to drop sepsis  to  a  quarter  of  the  original  probability.  However,  the  variability
displayed between the different strategies shows a large variation. Note that solution E actually shows increase in ROP which
may be counter intuitive, yet looking at the constraints of strategy E we see that the division ratio connecting sepsis to ROP is
not constrained – in fact in all strategies that this constraint is not used, the change is ROP is very small. So the medical
expert will have to make a judgment call if the connection between sepsis on ROP is constrained by both odds ratios and
division ratios. In absence of knowledge the answer of the system may be written as the following sentence: 

When modeling the effect of a hypothetical treatment that drops sepsis from 32% to 8% of the population while keeping odds
ratio constraints, different models show a change in ROP from 47% to the range of (40.9% - 47.5%) where the most informed
model reached 43%. 

This solution should be compared to the solution in the first table in (Dammann, Chui and Blumer, 2018), where for Sepsis =
5-10% results in ROP of 40-41%. Our EC solution of 43% seems conservative, although strategy C seems to match in both
solutions. Our EC solution, however, shows a variety of solutions that the epidemiologist should consider.

DISCUSSION

The solution provided in this paper is by no way optimal and can be improved in many ways. While still using EC algorithms
it is possible to rewrite the solution definition so that instead of generating individuals, the solution will generate Group sizes
#Gabc and by this speed up the solution considerably. This solution will still have the advantages of the EC solution, yet it
will  not  have the advantage of  being general  enough to allow more complicated population generation.  For example if
another parameter would be added to the problem that is not Boolean, e.g. duration of oxygen that would be represented by a
real  number,  it  would not be possible to represent it  using number of individuals per group. However,  with the current
solution that generates a population, it would be easy to randomly generate it and add constraints. So the solution provided,
although not optimal, opens future opportunities and can be merged with other population techniques (Barhak, 2015).

Although other solutions still have value and can be merged with the techniques presented here, it is important to note that
this type of population modeling problem does not require a quick solution. Instead, it requires exploration of the possible
solutions to better understand the observed situation. Specifically, in this work it was shown that the problem is not fully
defined  and  epidemiological  experts  should  provide  additional  information  when  published  to  properly  represent  the
population studies. The following is recommended:

1. Report  statistics with higher precision. This practice is  considered unpopular  within the biomedical  community
where the statistical error is many times larger than the precision of one digit. However, if computers are asked to
reconstruct population characteristic of a population, those numbers can prove useful as those provide ways to check
solutions.  An  appendix  to  a  paper  publishing  results  with  the  full  precision  numbers  would  also  help  in
reproducibility  and verification  modeling issues.  To support  this  claim,  see the calculations  in the appendix in
(Hayes et. al. 2013) to show how verification can fail when insufficient digits of precision are given. 

2. Provide additional measurements of a population. Even clinical trial reports that attempt to provide information on
the  structure  of  a  population  tend  to  limit  information.  Even  where  reporting  statistics  to  ClinicalTrials.Gov
(ClinicalTrials.gov, Online), which is now required by law (110th Congress, 2007), studies under report information
and many times stick to the very basic Age and Gender categories and do not match data provided in publications. If
clinicians want to have their study results reproduced virtually, they have to provide sufficient information for the
data to be machine comprehensible. 

3. Alongside known facts,  clinicians should provide possible explanations even if measurements  are  not reported.
Algorithms such  as  EC algorithms can  get  additional  possible  explanations  and  see  how those  fit  the  reality.
Specifically  in this problem, if  the clinician would define  additional  possible biological  invariants  it  would be
possible to verify those and provide a more conclusive answer. For example, if one of the added constraints to the
second step would be defined as invariant, it would be possible to verify if indeed it is invariant.
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REPRODUCIBILITY INFORMATION

The results for this paper were calculated on a 4 core laptop computer with Windows 10 deployed by Anaconda (64-bit) with
python 2.7.14, dask 0.17.2, bokeh 0.13.0, inspyred 1.0, numpy 1.14.2 , holoviews 1.10.7 and on a 64 core server with Linux
18.04 with Anaconda (64-bit) python 2.7.15, dask 0.19.1, bokeh 0.13.0, inspyred 1.0, numpy 1.15.3, holoviews 1.10.7. The
code is stored in the GitHub repository: https://github.com/Jacob-Barhak/PopDOM 

The numbers used in this paper are taken from (Dammann, Chui and Blumer, 2018). Those numbers are close to the numbers
in (Chen, 2011), yet are not an exact match, so the analysis in this paper should not be considered for epidemiological use
without further exploration into the differences. 
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