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ABSTRACT 

The USAF has established a new approach to Specialized Undergraduate Pilot Training (SUPT) called Pilot Training 
Next (PTN) that integrates traditional flying sorties with VR-enabled ground-based training devices and data-driven 
proficiency tracking to achieve training efficiencies, improve readiness, and increase throughput. Eduworks and 
USC’s Institute for Creative Technologies are developing machine learning (ML) models that can measure user 
engagement during any computer-mediated training (simulation, courseware) and offer recommendations for restoring 
lapses in engagement. We are currently developing and testing this approach, called the Observational Motivation and 
Engagement Generalized Appliance (OMEGA) in a PTN context. Two factors motivate this work. First, one goal of 
PTN is for an instructor pilot (IP) to simultaneously monitor multiple simulator rides. Being alerted to distraction, 
attention and engagement can help an IP manage multiple students at the same time, with recommendations for 
restoring engagement providing further instructional support. Second, the virtual environment provides a rich source 
of raw data that machine learning models can use to associate user activity with user engagement. We have created a 
testbed for data capture in order to construct the ML models, based on theoretical foundations we developed for a 
related project reported at MODSIM 2019. We are running pilots through multiple PTN scenarios and collecting 
formative data from instructors to evaluate the utility of the recommendations OMEGA generates regarding how 
lapsed engagement can be restored. We anticipate findings that validate the use of ML models for learning to detect 
engagement from the rich data sources characteristic of virtual environments. These findings will be applicable across 
a broad range of conventional and VR training applications. 
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PROBLEM SUMMARY 
 
To support a complex array of current and envisioned missions, the U.S. Air Force trains and educates a large 
uniformed workforce across diverse Air Force Specialty Codes (AFSCs). Early-stage training in many AFSCs presents 
Airmen and officer trainees with large corpora of foundational knowledge to master, delivered through a variety of 
modalities. This content is taught at technical training or flight schools in courses lasting up to several months. Because 
motivation is a necessary element for learning retention and force readiness, Air Force education and training 
stakeholders continue to look for ways to engage their constituencies, through gamified interactive learning, 
simulation, and the use of mixed-reality immersive environments.  
 
To maintain an engaged, motivated cadre of Airmen and officers, OMEGA, via a service-oriented, general-purpose 
appliance operating in concert with the learning environment, will recommend interventions when end-users are 
showing signs of a lapse in engagement. These services will be accessible to any AF instructional system, which can 
automatically or through a human instructor locally effect OMEGA’s recommendations. OMEGA will enable AF and 
DoD learning environments to identify and adapt to detected lapses in engagement, promoting greater motivation, 
retention, and readiness. 
 
PROJECT CONTEXT: PILOT TRAINING NEXT 
 
The test case for OMEGA, selected by the Air Force, is Pilot Training Next (PTN). PTN, now training its third 
iteration of pilots, aims to the reduce the time and cost of undergraduate pilot training (UPT) by leveraging virtual 
and augmented reailty, biometrics, AI, and data analytics. While PTN student pilots fly the same hours and sorties in 
the T-6 as do their legacy pilot training counterparts, the ground-based training is done using an immersive PC-
based flight simulator (Lockheed Martin’s Prepar3D®), VR headset (HTC’s VIVE™ Pro), stick, throttle and rudder 
pedals, and a syllabus of PTN-specific scenarios (Figure 1). 
 
PTN has maintained a heavy emphasis on data collection and analysis. Reliable and predictive metrics are needed 
not only to assure instructors and higher command that student pilots are achieving the same skills as their legacy 
training counterparts, but also because PTN students qualify for graduation on the basis of achievements rather than 
on calendar time. This fundamental change in how students progress requires an abundance of data that supplement 
instructor evaluations to ensure skill mastery.  
 
During scenarios flown in the simulator, objective data is readily captured for every time interval, such as aircraft 
state (position, attitude, airspeed) and configuration (aileron, rudder and elevator deflections; flap and gear 
positions). Instructors can also monitor how the scenario is progressing overall and can provide verbal feedback in 
real-time. 
 
Some important metrics though are less directly observable or measurable. Student engagement is widely accepted 
as a critical mediating factor in both learning retention (e.g., Hu & Hui, 2012) and learning outcomes (e.g., Chi & 
Wylie, 2014). The importance of engagement is not lost on instructors (though labels like attention and focus are 
more common in pilot training), and is often the basis for, or at least an element of, scoring situational awareness 
(SA). Two additional factors make engagement even more salient for PTN. First, instructors have less visibility into 
student engagement (due to the VR headset) than in conventional simulators. Second, a vision for PTN is for one 
instructor to be monitoring multiple students simultaneously. Indirectly-observable measures such as engagement 
will thus require some level of automation support to cue instructors when lapses are detected. 
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Figure 1.  PTN station showing VR headset, flight controls and external displays.  

(U.S. Air Force photo by Sean M. Worrell) 
 
MODELLING ENGAGEMENT  
 
In training sorties flown in the aircraft or in conventional simulators, an instructor pilot (IP) monitors the student 
pilot’s performance. Maneuvers are evaluated by observing air speed, vertical speed, attitude, angle of attack, and so 
on. Instructors are also interested in situational awareness (SA), which they can assess by observing the student’s 
ability to “stay ahead of the airplane”: anticipating upcoming changes in heading, airspeed, or altitude; applying 
smooth control inputs to adjust bank angle, pitch and power; and maintaining proper scan of the flight instruments.  
 
Several theoretical frameworks for characterizing engagement informed our model of engagement. We created an 
inventory of nine relevant engagement and disengagement models from the literature that emphasize behavioral 
indicators (e.g., data from log files or from direct queries to the user) (Core, et al., 2016). These included Intrinsic 
vs. Extrinsic (Porter & Lawler, 1968); Two Factor Hygiene-Motivator Theory (Gawel, 1997); Motivators from 
Maslow's Hierarchy (Ibid); Achievement Goal Theory (Pintrich, 2000); D'Mello & Graesser's Engagement model 
(2012); and Baker's indicators of passive vs. active disengagement (Baker, Corbett, Roll & Koedinger, 2008). From 
this we synthesized a multi-timescale engagement and motivation model (Bell, Kelsey & Nye, 2019). 
 
More recently, we refined the model to reflect the aviation focus of this project, preferring metrics associated with 
event response tasks (e.g., maneuvering to avoid a new hazard) and monitoring tasks (e.g., maintaining straight and 
level attitude). We incorporated significant research conducted to identify indicators of distraction and 
disengagement for accidents attributed to loss of control and airplane state awareness (Harrivel, et al, 2017; 
Wickens, 2005). A subset of these states is relevant to flight tasks performed in simulated environments: 
 
• Attention vs. Distraction: Situational awareness was particularly reduced by the induction of diverted attention. 

Channelized attention or attentional tunneling also indicated loss of situational awareness (Harrivel, et al, 2017); 
• Boredom and Distraction: Distraction can be characterized by any time without interaction with the system; 

engaged pilots interacted with the system to optimize performance, even when this was not required to meet 
performance requirements (Cummings, et al, 2013); 

• Attentional Tunneling: Attentional tunneling is indicated by lack of interaction with one or more system 
elements, coupled with strong interaction with another element (Wickens, 2005); 

• Vigilance: Diligence, distraction and daydreaming all lead to failures in practical monitoring tasks (Casner & 
Schooler, 2015). 
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The model resulting from this additional analysis is shown in Figure 2. The resulting expert model is based on eight 
input metrics which are used to compute three mid-level features: Performance, Efficiency, and Responsiveness. An 
overall composite measure of current engagement within a given data window is derived from these mid-level 
features. The relative weights and derivation methods shown in Figure 2 represent the initial trial conditions. We 
anticipate that these will be refined through additional testing. 
 
 

 
 

Figure 2.  Engagement Model  
 
 
ENGAGEMENT METRICS AND VIRTUAL REALITY 
 
A desktop flight simulator generates a rich set of data, including aircraft position, attitude and configuration. From 
such data, objective performance metrics can be calculated with some reliability. For instance, detecting when a 
student pilot lowers the gear while the airspeed exceeds the maximum gear-down speed is straightforward. To 
monitor engagement, however, requires aggregating observable measures to generate an indirect estimate of 
engagement. Our model, for instance, specifies eight such indirect measures. 
 
The addition of a VR head-mounted display (HMD) adds additional data points that could be incorporated as part of 
a suite of metrics to monitor engagement levels. Typical VR headset and sensors can capture head position and 
movement; higher-end devices, such as the VIVE Pro Eye, can capture eye tracking data. The VR environment thus 
adds to the already rich data stream available from the simulator.  This apparent abundance of data, however, does 
not solve the problem of developing reliable measures of engagement. Several challenges for interpreting the data 
remain, including, non-exhaustively:  
 

1. Understanding which data points are relevant to engagement; 
2. Setting proper coefficients representing how each data point should be weighted; 
3. Distinguishing between and properly applying a single data point x observed at time t compared with a trend 

of how x behaves over some interval (e.g., from t – 5 seconds to t + 5 seconds).  
4. Incorporating the velocity of the change in a data point, for instance, how abrupt an aileron deflection or 

throttle movement the student applied. 
 

A principal emphasis of this work is to explore the role that machine learning models could play in interpreting 
simulator and VR device data in order to develop measures to drive our conceptual model of engagement. This 
machine learning approach is summarized in the next section. 
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MACHINE LEARNING MODEL 
 
We employ machine learning to allow OMEGA to develop more accurate predictive associations between raw data 
inputs and higher-level aggregated engagement metrics. This section describes the techniques and architecture of the 
OMEGA machine learning component. Our design leverages the underlying data streams available from Prepar3D 
to provide better predictive power in situations where there is limited access to interpreted data (e.g. when 
interpreted metrics of event occurrence, event success/failure, and efficiency are not available). To achieve this, we 
employ three methods in combination: 
 

1. Standard machine learning. We use standard machine learning techniques to attempt to accurately predict 
engagement and disengagement in input metric sequences. These approaches are attractive because they 
enjoy fast estimation methods with low run-time, and therefore can provide near-instant feedback to 
instructors. Based on the features and data available in Prepar3D, we have selected Support Vector 
Machine (SVM) and Binomial Regression as the most applicable approaches. These techniques are most 
powerful in cases where sequence classification is not strongly context-dependent. For OMEGA, however, 
we expect some context-dependence in the data. For example, rapid adjustments of heading, altitude and 
airspeed may represent recovery from a period of inattention if these maneuvers occur between waypoints, 
but may represent an attentive reaction if observed during an event requiring active response (e.g. a heading 
change when passing a waypoint). To mitigate this risk and to improve the model, we deploy two 
additional “deep learning” layers of machine learning that are more robust to sequence classification in 
context-dependent data. 
 

2. Deep Learning - Bidirectional LSTM (long short term memory). We use bi-directional LSTM (a type 
of recurrent neural network) to produce improved results in sequence classification problems that are 
heavily context-dependent. In this case, determining whether a given sequence of composite low-level 
metric readings represents disengagement is likely to be highly context-dependent, for instance a climb at 
full throttle versus a climb at normal cruise speed. Bidirectional LSTMs, which consider the ‘context’ of 
both the preceding and following time slice data when predicting disengagement, are used in OMEGA to 
reduce the incidence of false-positive detection of disengagement in this environment. The tradeoff for 
improved disengagement and inattention detection is the high resource and time cost of maintaining 
bidirectional LSTM in OMEGA. Recurrent Neural Networks (RNNs) like LSTM are can be difficult to 
train due to memory-bandwidth-bound computation limitations. For this reason, we have selected a second 
deep learning approach in case the performance requirements present too much risk for OMEGA. 

 
3. Attention-based Modeling. The alternative deep learning approach we selected as the third layer in 

OMEGA’s machine learning stack is Attention-based Modeling.  Attention-based models are sequence-to-
sequence models designed to improve performance of RNN-based approaches. We use attention-based 
modeling as the third layer as a possible performance throttling mechanism in cases where bidirectional 
LSTM is too resource-intensive for OMEGA to be effective in real time.  
 
 

TRAINING THE MODEL 
 
Data for training the machine learning components derives from experimental subjects who fly a pre-selected set of 
PTN scenarios in a data collection station that mirrors most of a PTN simulator, namely, the simulation software, 
stick and throttle, and VIVE Pro HMD and sensors. The data collection station also includes a dedicated application 
for the experimenter to monitor each scenario, interact with the subject, and time-stamp relevant events. Figure 3 
shows an experimenter and subject during a data collection session. 
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Figure 3. Data collection PTN station (background), experimenter station (foreground). Photo by the authors. 
 
For purposes of creating training data for the machine learning models, experimenters are trained in a protocol to (1) 
time-stamp lower-intensity and higher-intensity segments of a scenario, to help the models account for workload in 
processing measures of user activity; and (2) engage the subject in conversation at specific points during a scenario. 
Conversing with the subject acts as a surrogate for disengagement. We posit that loss of attention, or distraction, will 
be statistically detectable in the simulation log files. Specifically, we anticipate three possible types of deviations: 

1) Response Time: Most dominantly, we anticipate that subjects’ time to respond to changes in the environment 
will be slower and/or less precise when engaging in conversation. Specifically, we anticipate a longer duration 
with no response after an event that requires a maneuver (e.g. heading change), followed in some cases by an 
initial control input that is more abrupt, more prone to overcorrect, or may even be in the wrong direction. 

2) Performance: We anticipate more likely failure to accomplish scenario goals (e.g., missing required waypoints). 
3) Efficiency: We anticipate that periods of distraction will tend to be less efficient, due to the above issues and 

due to less precise control over the aircraft (e.g., slower damping of over-correcting heading changes). 

Subjects were recruited from flying clubs in the Corvallis, OR and Los Angeles regions. Subjects qualified for the 
study through meeting either flying hour criteria or flight simulator experience criteria. Each subject was given a 
practice period with the PTN station and then asked to complete six PTN scenarios. 
 
The collected data will be used to train the machine learning model, comparing both the predictive power and the 
latency and resource requirements for each of our deep learning modeling techniques. 
 
ADAPTIVE RECOMMENDATIONS MODEL 
 
OMEGA processes detected engagement levels to generate adaptive recommendations to help an instructor restore 
lapsed engagement. During a scenario, based on combinations of different state signals, OMEGA will generate a set 
of intermediate inferences. These inferences include, for example, whether poor performance is due to consistently 
bad results versus irregular behavior or inconsistency (e.g., carelessness). The model employs both the basic state 
model and the aggregated inferences as inputs to calculate a scoring ranking for different adaptive interventions.  
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Our model considers three levels of outcomes: performance, responsiveness, and efficiency, each representing a 
distinct dimension of quality. Performance represents the basic ability to complete the assigned tasks, based on the 
performance criteria for those tasks (e.g., following a set of waypoints). Responsiveness represents the speed and 
effectiveness for a learner to adjust to new tasks or requirements (e.g., if a waypoint is moved, how quickly does the 
user adjust heading). Efficiency represents lean and strategic use of resources to complete a scenario (e.g., faster 
completion times).  
 
These quality criteria can each be thought of as building upon each other: a learner must adjust heading to a new 
waypoint or else there is no way to determine responsiveness. Likewise, efficiency is impossible if the user is not 
responsive enough to stay on course. This means that only some of these factors should be addressed with certain 
types of learners (e.g, high vs. low expertise). For example, if a user is failing to master proper take-off procedures, 
critiquing fuel efficiency would be out of place and of no training value. On the other hand, an otherwise high-
performing student pilot who is drifting off-course or leaving assigned altitudes may benefit from noting a need for 
improved in-flight checks.  
 

 
 

Figure 4. High-Level Policy for Adaptive Interventions in PTN 
 
The right-hand side of Figure 4 shows the interventions proposed for PTN. These include three distinct types of 
interventions: Messaging (Information about the task), Motivation (Context about the task and learning goals), and 
Recommendations (Suggestions on different tasks or breaks to improve learning). The left-hand side of Figure 4 
outlines a high-level policy for when specific interventions are expected to be appropriate for users with different 
skill levels and in different states. These connections between intervention types and student states do not represent 
the actual model. Instead, they represent key dynamics that the model will produce.  However, since the actual state 
space to calculate an effective intervention policy is too large to easily convert into a short graph, this model 
captures the key behaviors that the intervention model will be tested against, to ensure it behaves reasonably versus 
what would align to theoretical frameworks for engagement and responding to disengagement.  The intervention 
types are outlined in Table 1.  
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Table 1. Intervention Types for PTN 

Category Intervention 
Type 

Description 

Messaging Engage More A suggestion or warning that signs of decreased engagement were noticed, with 
a suggestion on how to improve 

Guidance A useful hint about how to do better on the specific scenario or skills 

Support Affective feedback to help a learner who is struggling 

Motivate Mastery Information about how better training can improve later real-life performance 

Growth 
Mindset 

Feedback about how sustained effort leads to improved skills and outcomes 

Recommend Increase 
Difficulty 

Suggest that the user might need more challenging scenarios to engage with 

Decrease 
Difficulty 

Suggest user might benefit from trying some easier scenarios before this one 

Take Break Suggest that user returns after taking a break, due to decreasing performance 

 
GENERATING ADAPTIVE RECOMMENDATIONS 
 
We propose two distinct methods for generating adaptation recommendations based on the internal state of the 
models used to measure engagement. The first approach is much less computationally-intensive and will produce 
recommendations with lower latency. However, given the highly contextualized nature of the input data stream, we 
expect the second approach to produce more accurate results. Work is currently in-progress for testing the trade-offs 
between timeliness and quality under different simulation conditions. 
 
In the first approach, we use the calculated values from the expert model of engagement (performance, efficiency, 
and responsiveness) as inputs to a machine learning classification model. Using the labeled data set produced during 
the data collection trials discussed above, we will apply several traditional machine learning modeling techniques to 
the classification task, where the outputs are the available set of adaptations available in the PTN training 
environment. We will use both Naive Bayes and Support Vector Machine (SVM) approaches. Given that the 
original input metrics include variables that are highly interdependent, we expect that SVM will yield superior 
results. SVMs have been demonstrated to predict the likelihood of learner withdrawal from online courses, for 
example (Kloft, Stiehler, Zheng & Pinkwart, 2014). 
 
These techniques do not account for the contextual nature of the data stream, instead analyzing each time slice as a 
separate case. As was the case for detecting engagement levels, therefore, the determination of an appropriate 
adaptation will depend highly on the context in which the disengagement event occurs, as well as on the 
environmental conditions being simulated.  
 
We define context as the data stream of pilot behaviors and actions preceding and following the time slice of 
interest, and environment as the set of conditions that obtain for that particular segment of the simulation (e.g. 
aircraft attitude, airspeed, vertical speed, status of systems). In order to fully account for the contextual nature of 
both the disengagement event detection and the recommendation of an appropriate adaptation, we are developing a 
second, more powerful model for capturing temporal information and learning high-level representations hidden in 
the metric data stream based on Artificial Neural Networks (ANN). 
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Until recently, much of the research in applying ANN to the interpretation of sensor data streams focused on 
traditional neural network approaches, such as feed-forward neural networks (FFNN) and deep convolutional neural 
networks (CNN). Al-Shabandar, et al. (2018) employed a range of machine learning models including ANNs to 
investigate factors driving student motivation in massively-online open courses (MOOCs). Recent success of 
recurrent neural networks (RNN) with long short-term memory (LSTM) in other applications has led to promising 
trials of this approach in several problem areas involving the use of sensor data streams to predict highly contextual 
operational states. RNNs have been used for, among other applications, associating motivation and engagement of 
students with outcomes in MOOCS (Piech, et al., 2015). 
 
More recently, architectural variations of this approach have been explored that also allow for the incorporation of 
operational conditions into the predictive model. These approaches use several bidirectional LSTM (BD-LSTM) 
models and a final FFNN layer to integrate both the contextual information encoded in the data stream (representing 
the sensor data) and the available operating context and environmental data. The model we have designed adapts 
this approach to the interpretation of Prepar3D data for (1) predicting the level of pilot engagement and detecting 
disengagement events; and (2) using contextual information about the nature of the disengagement to predict the 
most appropriate adaptation to recommend to the human instructor in the context of PTN training. 
 
The model is composed of several stacked layers of ANNs. The first BD-LSTM network extracts latent features 
from the multiple metric data streams describing pilot behavior. The second BD-LSTM network extracts latent 
features from the metric data stream describing aircraft movement, and the third BD-LSTM network extracts higher 
level features describing the operational environment. These layers are stacked with a final neural network layer to 
predict pilot disengagement level and events, depicted schematically in Figure 5. The states of the internal layers of 
these BD-LSTM networks are then used as the input into a separate recommendation model to predict the most 
appropriate adaptation in a given context. The recommendation model layer is a CNN network, which will be 
trained using the labeled data set from the pilot trials.  

 
Figure 5. Adaptation recommendation stacked neural network architecture 

 
 
PROJECT STATUS 
 
We are currently concluding the data collection phase, anticipating data from twenty-five subjects, each flying six 
PTN scenarios. Results from the machine learning model development will be presented during the conference. A 
formative evaluation using Air Force instructor pilots to provide feedback to OMEGA’s recommendations will 
immediately follow the model development. 
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CONCLUSION AND FUTURE WORK 
 
Simulation enhanced with VR provides immersive training that promises to advance learning outcomes and retention. 
A key factor in achieving positive results is learner engagement, which, in contrast to directly observable or objectively 
measurable factors, is challenging to assess. In some instances, the VR environment itself can obscure from instructor 
view some cues relevant to learning engagement. OMEGA addresses this gap by using machine learning models to 
develop predictive associations between simulation events and learner actions on the one hand, and learner 
engagement on the other. OMEGA also incorporates a model of adaptive interventions to remedy engagement lapses, 
and employs machine learning to develop associations between the context and environment of the engagement lapse 
and the optimal intervention to recommend to an instructor. 
 
Our results will provide concept validation to establish more general-purpose, service-oriented appliance that client 
learning applications can employ for detecting lapses in engagement and motivation, and for recommending 
adaptive interventions. OMEGA can thus address a need, across the service branches, to ensure that simulation-
based training, and training incorporating VR, results in engaged and motivated warriors, using adaptive instruction 
and providing data to help training managers track the efficacy of new technologies and paradigms. 
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