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ABSTRACT 
 
In the domain of combat simulations, the training and deployment of deep reinforcement learning (RL) agents still 
face substantial challenges due to the dynamic and intricate nature of such environments. Unfortunately, as the 
complexity of the scenarios and available information increases, the training time required to achieve a certain 
threshold of performance does not just increase, but often does so exponentially. This relationship underscores the 
profound impact of complexity in training RL agents. This paper introduces a novel approach that addresses this 
limitation in training artificial intelligence (AI) agents using RL. Traditional RL methods have been shown to struggle 
in these high-dimensional, dynamic environments due to real-world computational constraints and the known sample 
inefficiency challenges of RL. To overcome these limitations, we propose a method of localized observation 
abstraction using piecewise linear spatial decay. This technique simplifies the state space, reducing computational 
demands while still preserving essential information, thereby enhancing AI training efficiency in dynamic 
environments where spatial relationships are often critical. Our analysis reveals that this localized observation 
approach consistently outperforms the more traditional global observation approach across increasing scenario 
complexity levels. This paper advances the research on observation abstractions for RL, illustrating how localized 
observation with piecewise linear spatial decay can provide an effective solution to large state representation 
challenges in dynamic environments. 
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INTRODUCTION 
 
In the domain of combat simulations, the training and deployment of deep reinforcement learning (RL) agents still 
face substantial hurdles due to the dynamic and complex nature of such environments, which often results in an 
exponential increase in training time required to achieve a certain threshold of performance. Traditional RL 
approaches often struggle to learn in these environments due to the large state spaces necessary to properly represent 
the number of entities, detailed terrains, and variable initial starting conditions characteristic of wargaming. This 
complexity, compounded by RL's sample inefficiency, vastly increases the computational resources and time-to-train 
needed to achieve satisfactory agent performance outcomes—rendering the process impractically costly and time-
consuming. 
 
This paper presents a novel approach to overcome these challenges by abstracting the agent’s observation space while 
preserving sufficient detail of the relevant portions of the environment. By abstracting the state space into a more 
compact and computationally manageable observation while still maintaining critical spatial information, we aim to 
enhance training efficiency while significantly reducing the computational load needed. Specifically, our investigation 
delves into optimizing training efficacy against the backdrop of limited computational budgets—a common constraint 
in applying RL to combat simulations.  
 
In this study, we develop, implement, and test a localized observation abstraction approach using piecewise linear 
spatial decay. Through our analysis, we demonstrate that a localized observation strategy consistently outperforms a 
global observation method across increasing levels of complexity. This finding emphasizes the superiority of this 
approach when training agents in complex scenarios where spatial relationships are essential—offering a way to help 
RL scale to still produce acceptable levels of performance in larger, more dynamic environments than have previously 
been possible in the domain of combat simulations. 
 
BACKGROUND 
 
Reinforcement Learning 
 
Reinforcement learning is a subset of machine learning that involves an agent learning to make decisions through 
direct interaction with its environment. In this process, the agent executes actions and receives feedback, either as 
rewards or penalties. Its objective is to optimize the cumulative reward over time. Through this method of trial-and-
error search, the agent gradually learns the most effective actions based on the current state of the environment. This 
accumulated knowledge forms the agent's policy, which is essentially the set of strategies it uses for decision-making. 
 
More formally put, a reinforcement learning problem, 
shown in Figure 1, typically consists of a decision-maker, 
referred to as an agent, and an environment, represented by 
states 𝑠 ∈ 𝑆. The agent takes actions 𝑎! as a function of the 
current state 𝑠! such that 𝑎! = 𝐴(𝑠!). After choosing an 
action at time 𝑡(𝑎!), the agent receives a reward 𝑟!"# and 
finds itself in a new state 𝑠!"#. The action 𝑎! comes from a 
strategy called a policy 𝜋 that maps states 𝑠 ∈ 𝑆 to a 

Figure 1. The Reinforcement Learning Problem  
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probability of selecting each possible action 𝜋(𝑠, 𝑎). As the agent interacts with the environment, it learns the optimal 
policy that maximizes its reward in the long run. 
 
Although in this study we use RL to train intelligent agents in a combat simulation environment, this paper focuses 
on abstracting the state 𝑠! in a way that makes the RL problem more tractable in complex environments. Research we 
have leveraged in our approach to RL specifically include those exploring Atari 2600 games (Mnih et al., 2015; Van 
Hasselt et al., 2016), Go (Holcomb et al., 2018), Chess (Silver et al., 2017), Shogi (Silver et al., 2017), Dota 2 (Berner 
et al., 2019), StarCraft II (Vinyals et al., 2019), and Atlatl (Allen, 2022; Boron, 2020; Cannon & Goericke, 2020). 
Nevertheless, despite RL having achieved human, expert, or even superhuman-level play in some of these games, to 
date, AI agents have not been shown to significantly outperform humans or scripted (rule-based) agents in the complex 
domain of wargaming. In fact, research applying RL to combat simulations has shown that despite good outcomes in 
small scenarios, scaling to larger scenarios has typically resulted in poor performance (Boron, 2020; Cannon & 
Goericke, 2020; Rood, 2022). We posit that this is in large part due to the exponential growth of state space complexity 
(Bellman, 1954) and well-documented sample inefficiency problem in RL requiring extensive interaction with the 
environment (Mnih et al., 2015), especially as its observation space grows in complexity. 
 
State Abstraction 
 
The notion of abstraction for AI is not new and has been used since the beginning of AI and logic, dating back to the 
work by Whitt in approximating dynamic programs (Whitt, 1978; Abel, 2019). Giunchiglia and Walsh (1992) 
informally defined abstraction as “the process of mapping a representation of a problem onto a new representation.”  
Abstraction allows people to consider what is relevant and to forget or disregard what is irrelevant based on the specific 
task at hand (Giunchiglia & Walsh, 1992).  
 
Within the context of AI and RL, abstraction plays a critical role in simplifying complex decision-making processes. 
Given limited computational power and a complex enough environment, agents in a simulation cannot model 
everything in their environment and still learn appropriate or optimal behaviors within a reasonable time. As the 
complexity of the environment increases—and assuming that a minimum level of performance is desired—agents may 
have to discard some information and focus only on relevant information to solve a specific problem. This form of 
abstraction allows for a more manageable representation of intricate environments, enhancing the learning efficacy of 
AI agents (Ho et al., 2019). Moreover, this approach not only has the potential to reduce computational demands but 
may also improve the adaptability and performance of AI-trained agents in scenarios that may be significantly different 
from the scenarios for which the agents were trained (Abel, 2019). 
 
As Shanahan and Mitchell (2022) explore in depth in their research, for abstraction to be most useful, “the domain of 
a concept’s application must be larger than the domain of its acquisition.” We contend that abstraction is critical to 
transferring concepts learned from one setting to another that differs from which it acquired said concept. 
Nevertheless, because abstractions inherently discard information—potentially compromising the effectiveness of the 
decisions made based on these abstractions—we must understand and balance the trade-off between making learning 
easier (or tractable) and preserving enough information to allow for optimal policy discovery (Abel, 2020). The more 
we abstract the state space, the more information is lost and the harder it will be to guarantee an optimal or near-
optimal solution (Li et al., 2016). Nevertheless, researchers agree that a tradeoff exists in that, although coarser 
abstractions may result in sub-optimal actions, they allow for better planning and value iteration (Li et al., 2016).  
 
While the concept of abstraction as applied to RL has slowly evolved, Abel (2019) formalizes this notion and 
comprehensively investigates the role of abstraction in RL in detail, particularly focusing on state abstraction. For this 
paper, we use Abel’s (2020) definition of State Abstraction as a function 𝜙 ∶ 𝑆 → 𝑆$, which maps each true 
environmental state 𝑠 ∈ 𝑆 into an abstract state 𝑠$ ∈ 𝑆$. In other words, an abstracted state serves as the agent’s 
interpretation of the current environment, which will discard or simplify some information.  
 
RELATED WORKS 
 
The field of abstraction in reinforcement learning (RL) has seen a variety of approaches, each addressing different 
aspects of complexity in the decision-making processes. Understanding these works contextualizes our research and 
highlights the gaps our study aims to fill. 
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Sutton et al. (1999) pioneered the concept of temporal abstraction in RL by extending Markov decision processes 
(MDPs) (Puterman, 1994) and proposing semi-Markov decision processes (SMDPs). This foundational work 
emphasized understanding temporal factors in decision-making, focusing on the abstraction of actions rather than 
states. While crucial in developing the RL framework, it differs from our approach, which instead concentrates on 
state abstraction in the spatial context. 
 
Further exploring abstraction in games with large state spaces, Sandholm (2015) introduced sophisticated methods for 
game-theoretic abstraction in large incomplete-information games. His work involved creating simpler models of 
games that maintained strategic similarity. This methodology is instrumental in game theory but diverges from our 
focus on state abstraction tailored to specific spatial dynamics. 
 
Andersen et al.’s (2018) study on variational autoencoders (VAEs) captures elements of our approach in simplifying 
complex state spaces. Their emphasis, however, is on probabilistic latent space encoding as opposed to our 
deterministic spatial representation. While VAEs provide valuable insights into data encoding, our method focuses on 
explainable spatial relationships vital to decision-making in combat-like scenarios. 
 
Ho et al. (2019) highlighted the critical role of abstraction in AI and RL, especially in managing complex 
environments. Their insights into state and temporal abstractions for efficient decision-making align closely with our 
work. Ho et al. (2019) demonstrated how abstraction simplifies computations and facilitates efficient trade-offs in 
learning—informing our approach in combat simulations in support of wargaming. 
 
In a more focused application, Allen et al. (2021) utilized Markov processes for state space compression in RL. 
Specifically, their method grouped similar states based on transition patterns. While this offers a useful form of 
abstraction, it contrasts significantly with our approach where the spatial component, rather than the transition patterns, 
is central in informing optimal behaviors. 
 
Lastly, Jergeus et al. (2022) took a unique approach by proposing linguistic abstractions in RL using a neuro-symbolic 
framework. While a completely different form of abstraction, their focus on abstracting linguistic communication 
among agents illuminates the versatility of abstraction techniques.  
 
Each of these works illustrates the broader application of abstraction in RL. Collectively, they demonstrate the diverse 
methods of tackling complexity in the decision-making process. Our research builds upon these foundations, explicitly 
addressing the underexplored area of spatial state abstraction in the complex and intricate domain of combat 
simulations. As discussed by Abel (2020) in his Ph.D. Dissertation, A Theory of State Abstraction for Reinforcement 
Learning, RL agents currently face significant challenges in generalizing experiences, exploring environments, and 
learning from delayed and sparse feedback, all within limited computational constraints. Abel (2020) highlights the 
necessity of abstraction in these processes, focusing on state abstraction, to improve sample efficiency in RL. 
Furthermore, he outlines three desiderata for useful state abstraction—preserving near-optimal behavior, being 
learnable and computable efficiently, and reducing the time or data needed for effective decision-making—all of 
which we also seek to achieve in this study. 
 
METHODOLOGY 
 
To compare the tradeoffs between the traditional global observation approach and our approach using localized 
observation abstraction with piecewise linear spatial decay, we use the Atlatl simulation environment and employ the 
following methodology to investigate the tradeoff in agent performance vs. scenario complexity.  
  
Atlatl Simulation Environment 
 
We use the Atlatl Combat Simulation environment (Darken, 2022) to develop, implement, and experiment with our 
research approach. Atlatl is a simple but effective combat model developed at the Naval Postgraduate School (NPS). 
It includes an underlying combat model that is purposefully simplistic, as well as the surrounding Gymnasium (Farama 
Foundation, 2023) infrastructure that supports rapid AI experimentation. The environment also contains hooks that 
enable interfacing with standard RL codebase and algorithms, such as Stable-Baselines 3 (SB3). This type of basic 
environment allows researchers to develop, apply, and evaluate cutting-edge AI to operational and tactical problems 
more efficiently and effectively than using operational or high-fidelity simulation systems.  
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Through a web browser interface, Atlatl allows a human player 
to play against the AI; however, the simulation can also run 
headless with an AI playing against another AI. Additionally, a 
browser-based replay capability allows for replays of AI versus 
AI engagement. An example of a simple scenario on an Atlatl 
game board is shown in Figure 2. Units are represented visually 
by their respective military operational terms and graphics, and 
terrain is represented visually in colors (e.g., water is blue, rough 
terrain is brown, urban is gray). 
 
The scoring system within Atlatl is fully customizable. Currently, performance within Atlatl is scored based on kills, 
losses, and holding urban areas, though these metrics can easily be changed as desired. Game scores are given from 
the perspective of the blue player. For this experiment, scoring is primarily computed based on two factors: combat 
effectiveness and control of urban areas (used to represent cities). We use the following scoring function: 
 

𝑆!%!&' = 𝑆(')*_,-!. + 𝑆(')*_,%/(&! − (𝑆0*1_,-!. + 𝑆0*1_,%/(&!) 
 
Where 𝑆(')*_,-!. is the score per city owned by the blue faction; 𝑆(')*_,%/(&! is the score for each red agent damaged 
in combat by the blue faction; 𝑆0*1_,-!. is the score per city owned by the red faction, and 𝑆0*1_,%/(&! is the score for 
each blue agent damaged in combat by the red faction.  
 
As shown, control of urban hexagons plays a significant role in calculating the player’s score. At the start of each 
scenario, unoccupied urban hexagons are not controlled by any faction. Control shifts only when an entity occupies 
the urban hexagon, with the controlling faction awarded a score of 24 points per phase controlled. Of note, once an 
urban hexagon is occupied, it remains under that faction’s control even if the entity vacates the hexagon, up until an 
entity of the opposing faction occupies the same urban hexagon. 
 
Regarding combat, each entity begins with an initial 100 strength points. Each damage point inflicted on a red entity 
translates into a positive point for the blue faction, while each damage point inflicted on a blue entity translates into a 
negative point for the blue faction. If an entity’s strength drops below 50 points, it is removed from the game (i.e., 
deemed ineffective) and the remaining strength points are awarded to the opposing faction. 
 
Global Observation 
 
The global observation in Atlatl consists of an 18 × 𝑛 ×𝑚 tensor, where n and m are the height and width of the 
gameboard. For this study, we use square gameboards (e.g., a 5 × 5 scenario consists of an observation space of 
18 × 5 × 5). Each channel of the tensor represents one specific type of information to be captured, as shown in 
Figure 3. Specifically, channel 0 is a binary matrix depicting where the blue unit to be moved (or on-turn) is located; 
channel 1 is binary matrix depicting all blue units that still have the ability to move during the current phase; 
channel 2 is a binary matrix depicting all legal moves available for the unit on-move; channels 3 and 4 are matrices 
that depict the health level (scaled from 0 to 1.0) of each respective unit on the gameboard based on factions; 
channels 5 through 8 are binary matrices depicting unit types; channels 9 through 13 are binary matrices 
representing terrain; channels 14 and 15 are binary matrices depicting the city owner (i.e., which faction was the last 
to pass through an urban hexagon); channel 16 is a matrix filled with a phase indicator value representing the current 
phase of the game; and channel 17 is a matrix filled with the normalized game score. While we recognize that these 
last two features can be represented more compactly as vectors or scalars rather than matrices, we maintain the 
matrix construct for simplicity. 
 

Figure 2. Atlatl Gameboard Example 
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Figure 3. Global Observation Image Channels 
 
Localized Observation Abstraction Using Piecewise Linear Spatial Decay 
 
Our localized observation space takes in the game’s global observation space described above and performs 
additional processing to compress the information into an 18 × 7 × 7 observation, regardless of actual gameboard 
size. Even gameboards smaller than 7 × 7 are represented as a 7 × 7	with the area outside of the gameboard simply 
represented with zeros. To construct the localized 7 × 7 matrix, we first center the global matrix on the agent on-
move. We then divide the entire area into 24 equal segments (due to the outer perimeter of this matrix consisting of 
24 total grids) of 15° each. Finally, we multiply each entry by a weight 𝑤 as a function of Euclidean distance 𝑑, 
determined by the following equation, and visually depicted in Figure 4: 
    

																																																𝑤(𝑑) =

⎩
⎪
⎨

⎪
⎧

1

1 − 0.9 ∗ G
𝑑 − 3
7 − 3I

0.1 − 0.9 ∗ G
𝑑 − 7
100 − 7I

0.01

 

 

 
Figure 4. Visual Depiction of Piecewise Linear Decay Function 

 
A conceptual illustration of this method is shown in Figure 5. Moving from left to right, the first image in Figure 5 is 
an example 10 × 10	gameboard with a single urban hexagon, 3 blue units, and 4 red units. The second image shows 
the inner 5 × 5 grid overlay in blue. Everything within this 5 × 5 will remain to scale due to its multiplication by a 
weight of 1. The third image depicts the area in which each element is first multiplied by a linearly decaying weight, 
then summed with the other values found within the respective 15°	radial sector, and finally inserted into the 

Unit on-move
Units who can move
Legal move hexes for unit on-move
Health of each blue unit
Health of each red unit
Unit type – infantry
Unit type – mechanized infantry
Unit type – armor
Unit type – ar>llery
Terrain type – clear
Terrain type – water
Terrain type – rough
Terrain type – marsh
Terrain type – urban
City owner – blue
City owner – red
Phase indicator
Normalized game score

for 𝑑 ≤ 3 
 

for 3 < 𝑑 < 7 
 
for 7 ≤ 𝑑 < 100 
 

for 𝑑 ≥ 100 
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respective location in the outer perimeter layer of the 7 × 7 localized grid. For each channel in the observation, this 
results in a 7 × 7 grid where the inner 5 × 5 is the 2 layers of adjacent hexagons surrounding the unit on-move to 
scale, and the outer perimeter of the 7 × 7 grid represents all of the information from the rest of the gameboard 
compressed by radial sector into a single value. To prevent the convolutional kernels from being distorted by 
disproportionately high values on the perimeter, we allow a maximum value of 1.0. This measure ensures that the 
data across both inner and perimeter hexagons is kept within a uniform scale, allowing the convolutional network to 
accurately interpret spatial relationships and maintain consistent performance across the gameboard. 
 

 
Figure 5. Graphical Depiction of Localized Observation 

 
It must be noted that fidelity of information is lost in this process. For example, a unit at 100 strength points 10 
hexagons away would be represented with a value of 0.7, whereas a unit at 50 health points that is 4 hexagons away 
would be represented with a value of 0.775. Furthermore, because we are also summing up by radial sector, the 
resulting value can be misleading or ambiguous as it conflates separate data points into a single value—potentially 
confounding the interpretation of individual unit strengths. Nevertheless, we postulate that this approach still 
provides the agent with sufficient information to make optimal or near-optimal near-term decisions, while still 
maintaining awareness of the entire gameboard. 
 
Within the context of Abel’s (2020) definition of State Abstraction 𝜙 ∶ 𝑆 → 𝑆$,  𝜙 is our function that takes the global 
state 𝑠 ∈ 𝑆, applies our localized piecewise linear spatial decay method described above, and converts it into an 
abstracted state 𝑠$ ∈ 𝑆$. 
 
Experiment 
 
Using the Atlatl simulation environment, we design and conduct the following experiment. 
 
Gymnasium Environment 
For our RL training, we use a custom Gymnasium (Farama Foundation, 2023) environment configurable for different 
roles (“blue” or “red), AI types, and scenarios. The action space of our RL agent is defined as 7 discrete actions, one 
for each adjacent hexagon, plus the option to “pass” (i.e., take no action). Legal moves are defined as either moving 
to an unoccupied adjacent hexagon or engaging in combat by selecting a hexagon occupied by a unit of the opposing 
faction. 
 
Neural Network Architecture 
We use a residual convolutional neural network (CNN) specifically designed to process a hexagonally structured input 
observation space of any size which, for this study, is 𝟏𝟖 × 𝒏 × 𝒏 where 𝒏 is the size of one side of the gameboard. 
The architecture uses convolutional layers to transform the input observation tensor into 𝟔𝟒 output channels. This is 
followed by 𝟕 additional layers of 𝟔𝟒	channels each. Each layer features HexagDLy hexagonal convolutions (Steppa 
& Holsch, 2019) with a kernel size of 𝟏 × 𝟏 and a stride of 𝟏. Additionally, in each layer, we include a Rectified 
Linear Unit (ReLU) activation function and a residual connection. After 𝟕 layers, the resulting multi-dimensional 

Example Scenario Area represented to scale Area compressed using 
linear decay

Resul>ng representa>on



 
 
 

MODSIM World 2024 

2023 Paper No. 13051-28 Page 8 of 12 

tensor is then flattened into a one-dimensional tensor and is passed through a final linear layer. This layer maps the 
flattened tensor to a 𝟓𝟏𝟐-dimensional feature vector, which is then passed through a final ReLU activation function.  
 
Reinforcement Learning Algorithms 
We employ the Deep Q-Network (DQN) algorithm (Raffin, 2018). The hyperparameters used were optimized through 
extensive hyperparameter tuning in similar scenarios, though not specific to this experiment. The final configuration 
included a learning rate of 𝟎. 𝟎𝟎𝟎𝟐, a buffer size of 𝟏, 𝟎𝟎𝟎, 𝟎𝟎𝟎, learning starting at 𝟏𝟎, 𝟎𝟎𝟎 steps, a batch size of 
𝟔𝟒, and a discount factor (𝜸) of 𝟎. 𝟗𝟑. The target network update interval was set to 𝟏, 𝟎𝟎𝟎 steps. For exploration, 
we employed an initial epsilon (𝜺𝒊) of 𝟏. 𝟎, decaying linearly to a final epsilon (𝜺𝒇) of 𝟎. 𝟎𝟏, with an exploration 
fraction of 𝟏. 𝟎. The training frequency was set to every 𝟒	steps, with a gradient step of 𝟏 per training update.  
 
Scenarios 
We use randomly generated scenarios consisting of square hexagonal gameboards with one city and no other terrain. 
We use scenario gameboard sizes from 3 × 3 up to 12 × 12 in increments of 1, with each representing an increase in 
complexity level, where complexity level 3 is represented by a 3 × 3, complexity level 4 by a 4 × 4, and so on.  
Examples are shown in Figure 6. Each game begins with a random number of entities per faction with a minimum and 
maximum number computed as a factor of the length of the gameboard, where 𝑛𝑢𝑚_𝑢𝑛𝑖𝑡𝑠/&4 =
𝑔𝑎𝑚𝑒𝑏𝑜𝑎𝑟𝑑_𝑙𝑒𝑛𝑔𝑡ℎ and 𝑛𝑢𝑚_𝑢𝑛𝑖𝑡𝑠/-5 = round(6&/*(%&01_'*56!7

8
). For example, for a 5 × 5 gameboard, the 

scenario would start with a random number of units per faction between 3 and 5; whereas for a 10 × 10 scenario, the 
random number of starting units per faction would be between 5 and 10. Each scenario also includes 1 urban hexagon 
randomly placed according to force ratio. If one faction has a smaller force ratio (i.e., less units as compared to the 
opposing faction), the city is placed on their side of the gameboard. If the force ratios are equal (i.e., both factions 
have an equal number of units), the city is placed in a neutral location along the middle axis of the board. We set the 
number of phases in the game as 𝑝ℎ𝑎𝑠𝑒𝑠 = 4 ∗ 𝑔𝑎𝑚𝑒𝑏𝑜𝑎𝑟𝑑_𝑙𝑒𝑛𝑔𝑡ℎ, where each phase is one entire turn for one 
faction (i.e., one faction is allowed to make one legal move for each of its available entities). Setting the number of 
phases to this value provides enough turns for a unit to go from one end of the gameboard to the opposite end and 
return, likely giving them enough turns to execute complex maneuvering if warranted. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Example Scenarios (From Left to Right, Complexity Levels 3, 6, 9, 12) 

 
Training 
We train each model for 10 million steps against a baseline rule-based adversary model we call Pass-Agg. This name 
is derived from the terms “passive” and “aggressive.” The agent first assesses its posture as “attack” or “defend” based 
on the relative strength of its faction as compared to its opponent. The agent prioritizes engaging any enemy units 
within its attack range of 1 hexagon (i.e., hexagons adjacent to its own position). If multiple targets exist within range, 
the agent uses a uniform distribution to select its target. In the absence of attack opportunities, the agent assesses 
which hexagon to move to based on proximity to enemy units and urban hexagons. The agent seeks to position itself 
advantageously while maintaining a balance between offensive actions and strategic repositioning. This decision is 
based on a hexagon scoring system that evaluates the advantage of moving towards urban hexagons or attacking 
nearby enemies. If neither attacking nor moving is advantageous, the agent may choose to “pass”, effectively 
maintaining its current position. While a simple model, Pass-Agg has proven to be an effective agent that regularly 
achieves near-optimal scores and displays credible moves that would be expected of these combat units. 
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To learn effective behaviors, we design a reward system that balances defeating the opposing faction and occupying 
urban hexagons with preserving its own force. Our rewards are computed at each time step using the following 
equation: 

𝑅*56-5**0*1 = max(𝑅0&9 , 0)
𝑆,
𝑆%
+ 𝐵!𝐼! 

 
Where 𝑅0&9 is the difference in game score between the current time step and the previous time step; 𝑆, is the current 
total friendly strength; 𝑆% is the original total friendly strength; 𝐵! is a terminal bonus reward of 25 points that our 
research shows discourages units from moving into the adversary units’ attack range during the last turn of the game; 
and 𝐼! is a terminal game state indicator that takes on a value of 1 if the game is terminal or 0 if the game is not 
terminal. 
 
Evaluation 
We evaluate each of our trained models against the Pass-Agg model. We run 100,000 games where each game begins 
with a randomly generated scenario using the scenario parameters specified above. In addition to training with the 
Pass-Agg behavior model as the adversary, we also evaluate Pass-Agg vs. Pass-Agg as our rule-based model baseline. 
While we anticipate that Pass-Agg will outperform the RL-trained models as complexity levels increase, we aim to 
assess the extent of improvement an RL-trained agent offers over a rule-based agent while also seeking to determine 
when this relationship reverses. The performance of the Pass-Agg model serves as our benchmark to determine the 
point at which an RL-trained model ceases to surpass the effectiveness of a rule-based approach. Lastly, we also 
evaluate a random-actions model to determine when our RL-trained models do no better than, or converge to, a random 
actor. 
 
RESULTS AND DISCUSSION 
 
With each trained model, we run an evaluation consisting of 100,000 randomly generated games for each behavior 
model at each complexity level against our baseline Pass-Agg adversary behavior model. The means of the scores are 
presented in Table 1. For conciseness, in the following sections, we use the term Local to refer to our RL-trained 
model utilizing the localized observation abstraction using piecewise linear spatial decay; the term Global to refer to 
the RL-trained model using a global observation; the term Rule-Based to refer to the scripted Pass-Agg model; and 
the term Random to refer to the random-actions model. Overall, we see in Table 1 that Local outperforms Global 
across all complexity levels by a large margin. Furthermore, we also see the Local outperforms Rule-Based in 
complexity levels 3 through 5 by a large margin and, as expected, begins to fall off as complexity increases.  
 
Table 1. Mean (𝒙p) Scores Across 100,000 Games for Each Model at Each Level of Complexity 
 

    Complexity 
    3 4 5 6 7 8 9 10 11 12 

M
od

el
 Local 181.4 227.7 225.3 88.4 -154.0 -394.6 -491.4 -620.2 -860.2  -908.6 

Global 31.5 -203.9 -488.6 -653.8 -808.8 -885.5 -1039.0 -1116.0 -1229.9 -1307.1 
Rule-Based 50.0 97.4 124.3 124.5 133.2 130.6 133.1 134.9 141.9 128.7 

Random -339.5 -465.7 -628.8 -724.2 -865.4 -948.0 -1078.6 -1158.4 -1284.7 -1364.6 
 
Table 2. Raw Standard Error of the Mean (SEM) of Each Model’s Scores Across 100,000 Games 
 

    Complexity 
    3 4 5 6 7 8 9 10 11 12 

M
od

el
 Local 0.9 1.2 1.7 2.0 2.2 2.1 2.2 1.8  1.3 1.3 
Global 1.0 1.0 0.8 0.8 0.7 0.8 0.9  0.9 1.0 1.0 

Rule-Based 1.0 1.3 1.7 1.9 2.3 2.6 3.0 3.3 3.7 3.9 
Random 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.8 

 
To verify that these differences in mean scores between our models are statistically significant, we set 𝛼 = 0.05 and 
run the Tukey-Kramer Honest Significant Difference (HSD) test. This test conducts pairwise comparisons between 
all possible pairs and details which specific groups’ means are significantly different from each of the other groups. 
We find statistical significance between mean scores for each model across all complexity levels used in our 
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experiment, each producing a p-value of < .0001. Additionally, we show the Standard Errors of the Mean (SEM) for 
each model based on complexity levels in Table 2.  
 
Figure 7 depicts the line plot of Mean Scores by Complexity for each model evaluated. Figure 8 shows the same data 
normalized to the random-actions behavior model (Random) using the standard normalization formula 𝑥:;<= =
4>4̅!"#$%&
@!"#$%&

. We normalize to Random for visualization purposes as we contend that an untrained neural network should 
produce random actions and can, therefore, be representative of the reasonably worst-case score. However, we 
acknowledge that even with training, it is still possible for a neural network to do worse than a random actor. 
Nevertheless, we use Random as our baseline for our zero line for graphical purposes to better observe how and when 
Global and Local converge to Random (i.e., when our models perform no better than a random actor). 
 

 
 

 Figure 7. Mean Score Vs. Complexity Graph 
 

 

 
 

Figure 8. Normalized Mean Score Vs. Complexity Graph 
 
As shown in both Figures 7 and 8, Local significantly outperforms Global across all complexity levels. We see clearly 
that Global’s performance begins to decrease from the beginning and then converges to our theoretical zero of 
Random. Local, on the other hand, maintains improved performance over Rule-Based until complexity level 5, after 
which it begins to decline in performance until it converges at a level still considerably above Global.  
 
Surprisingly, while we expected Global to outperform Local in the smaller scenarios (e.g., in complexity levels 3 and 
4), we found that Local outperformed Global by a large margin (149.940 points or 475.975% even in the simplest of 
scenarios). The increased performance of Local over Global, even in the smaller scenarios, may be due to the localized 
observation always being centered on the agent on-move. This could facilitate learning as this consistent perspective 
could allow for quicker generalization. Visual replays of these scenarios confirm the better performance of Local over 
Global across all scenarios. 
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We also find that Local significantly outperformed Rule-Based through complexity level 5, upwards of 262.122%. 
However, as expected, Rule-Based begins outperforming Local after a certain level of complexity is reached, where 
the given training budget is insufficient for an RL model to generalize quickly enough. In our experiment, this 
crossover point is complexity level 6. Beyond this point, we observe a gradual decline in performance in Local as the 
complexity level increases. Interestingly, whereas Global converges to our Random, Local still significantly improves 
over Global. Based on experiments that involved training in simpler environments, we expect this crossover point to 
move further to the right as we increase our training budget. 
 
CONCLUSION AND FUTURE WORK 
 
Overall, this research presents a compelling case for implementing a localized observation abstraction with some 
spatial decay component when training models using RL, specifically within environments where spatial relationships 
may be crucial. Whereas we hypothesized a trade-off space between the global and localized observation approaches, 
we find that a localized observation with spatial decay consistently outperforms a global observation approach across 
all levels of complexity examined. The superior performance of using localized observation is particularly striking in 
the smaller-scale scenarios, as it was anticipated that the global observation approach would be at least as good as the 
localized approach, if not better. We posit that the efficacy of the localized abstraction approach is likely due to the 
agent’s improved ability to generalize when centered in the observation space, significantly enhancing the learning 
process and decision-making ability. This approach balanced reducing state-space complexity with the retention of 
relevant information, thereby better optimizing the agent's performance. 
 
Revisiting Abel’s (2020) three desiderata for useful state abstraction (preserving near-optimal behavior, being 
learnable and computable efficiently, and reducing the time or data needed for effective decision-making), we find 
our observation abstraction clearly accomplishes all three. Our agents performed better than agents using global 
observations given a set training budget; our abstraction of the state space proved more efficient than training the 
agent to reach the same performance threshold using the global observation space; and our abstraction method reduced 
the time needed for training to reach a desired performance threshold. 
 
The outcomes of this study underscore the potential of localized observation abstractions to become a pivotal 
component in the application of RL in complex, dynamic environments, such as those encountered in military combat 
simulations. By demonstrating the limitations of a global observation approach and the advantages of a localized 
approach, this work paves the way for future investigations into more sophisticated observation abstraction methods 
to better enable RL scalability.  
 
We will extend the findings of this study by introducing more complex scenarios (e.g., using more types of terrain and 
units) and increasing the training budget to examine if the same trends hold valid with increasing complexity across 
these other dimensions. Furthermore, this study informs our current research area of scaling RL to deal with more 
complex scenarios via hierarchical reinforcement learning (HRL). These results and insights inform how we can better 
decompose the environment spatially and best explore the nuanced interplay between RL-trained agents and rule-
based agents across varying levels of complexity. Such research will refine and generalize the methodologies 
discussed and contribute significantly to the broader field of AI, offering insights into the scalable training and 
deployment of RL agents in real-world scenarios. 
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