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ABSTRACT 

 
The complexity of the driving task continues to increase due to several factors, including advancement of new vehicle 
designs, and resulting increases in cognitive workload.  Specific Service Signs are often introduced along the roadway 
to provide distinct navigational benefits (e.g., proactive assistance with travel decisions) for drivers.  However, such 
signage may also inadvertently impose unnecessary distraction to the driving task.  For these reasons, empirical studies 
are required (e.g., by transportation engineers, urban and regional planners, human factors experts, vehicle designers, 
educators) to evaluate the safety impacts (i.e., Navigational Benefit and Distraction Potential) associated with 
proposed roadway signage and other traffic control devices. 
 
In this study, we have performed a comprehensive evaluation of a singular Specific Service Sign (SSS) on simulated 
driver performance.  We have employed a high-fidelity Modeling & Simulation (M&S) framework to analyze driving 
scenarios of varying environment density, for which we developed a Safety Rating model and instituted appropriate 
statistical approaches to quantify and evaluate performance.  We further issued static and dynamic surveys for 
assessment of comprehension that supply additional insights on how the SSS may impact drivers differently.   
 
Based on our experimental observations: a) most drivers required glance durations that exceed accepted guidelines for 
safe following distance; b) the proposed SSS was rated as being low-moderate in terms of distraction potential, and c) 
below average in terms of navigation utility; d) increasing environment density in the vicinity of the proposed SSS 
has potential to impair safe driving performance.  The paper concludes with a brief description of ongoing and 
forecasted extensions for the current work.   
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INTRODUCTION AND BROADER IMPACTS 
 
With almost 230 million licensed drivers and 3.2 trillion total miles driven annually (U.S. DOT, 2019a, 2019b), driver 
safety remains a public health priority.  Highway traffic signs (e.g., see Figure 1) are often implemented to aid drivers 
with regional navigation (Babić et al., 2020).  Although the Manual on Uniform Traffic Control Devices (MUTCD) 
(FHWA, 2012) has long served as a nationwide standard for roadway control device form/function (e.g., size, shape, 
color, text, logos, fonts), proposed roadside signage can unwillingly induce cognitive distraction resulting in 
unnecessary risk to public safety (Bendak & Al-Saleh, 2010).  
 

  
Figure 1 – Diverse highway traffic sign types Figure 2 – Proposed SSS design (notional) 

 
Specific Service Signs (SSS) are a specific type of roadway control device, and are defined (FHWA, 2012) as “guide 
signs that provide road users with directional information for services and attractions.”  Figure 2 illustrates a recently 
proposed SSS (de-identified), including a signage header (top), a signage footer (bottom), and primary navigational 
content in the body of the sign.  Note that the proposed SSS contains four “logogram” panels each with text and 
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colored icons to describe regional places of interest.  To assess the navigational benefit (and the associated distraction 
potential) for the proposed SSS, we performed a Modeling & Simulation (M&S) evaluation on driver performance 
within scenarios of varying environment density.  Our implementation was informed by guidelines to evaluate human 
factors associated with roadway signage (Hawkins & Rose, 2005), including the safe number of panels placed upon 
service signs (Dagnall et al., 2013) intended for regional attraction signs (Rasdorf et al., 2017), specifically.  In our 
implementation, we developed a companion Safety Rating model to quantify and compare driver performance.  We 
obtained self-report data to assess signage comprehension that supplies additional insight on how proposed SSS may 
impact drivers differently.  We applied random parameter linear regression (Pang et al., 2022) to analyze the modeled 
safety ratings.  The paper concludes with a brief description of planned extensions for the current work.  
 
Please note that per sponsor request, the exact sign attributes (which have been introduced over the last decade) remain 
unidentified in this presentation and instead described in general terms.  Despite this limitation, our overall framework, 
experimental implementation, and M&S methodology remain extensible towards the analysis of future traffic control 
device technologies for ongoing benefit to the broader transportation and simulation science communities. 
 
EXPERIMENTAL DESIGN AND METHODOLOGY 
 
To analyze the positive (navigational benefit) and negative (distraction potential) impacts of proposed SSS, we 
implemented a high-fidelity simulator to evaluate human driving performance.  These facilities have previously been 
implemented for applications in safety research, education, and training (Hulme et al., 2021a, 2021b). 
 
High-fidelity driving simulator 
 
The simRING simulator (see Figure 3) is anchored by an electric six degree-of-freedom motion platform.  The 
passenger cabin includes a full front vehicle console with navigation controls (i.e., steering wheel, accelerator, and 
brake pedals | see Figure 4), a stereo sound system, and a display system that enables an immersive 360-degree field-
of-view with a cumulative resolution of 11520 x 1080p. 
 

   
Figure 3 - simRING (operator view) Figure 4 - simRING (driver POV) Figure 5 – Unity environment 

 
The Unity game engine has been implemented within our simulation framework to create a 10-square mile testing 
region.  EasyRoads 3D and Simple Traffic System were used to configure routes, lanes, and basic traffic logic.  
Realistic Car Controller uses C# scripting to customize individual vehicle behavior (e.g., tires, suspension, stability).  
Vehicle inputs (e.g., steering, gas, brake) and calculated vehicle states (e.g., position, speed, acceleration) are 
implemented for motion cueing.  Excursion data is stored for the subject vehicle, the lead vehicle, and environment 
geometry (e.g., coordinate positions of SSS, traffic signs, exit ramps) for post-processing.  The resulting test 
environment, whose design aspects were previously described in (Hulme et al., 2022), is shown in Figure 5.  
 
Simulated driving scenarios and experimental design 
Safe driving involves continuous coordination between visual, mechanical, and cognitive task demands (CDC, 2022).  
To simulate driver distractions, a car-following paradigm is often adopted, where a “lead vehicle” (e.g., Sena et al., 
2016 | see Figure 6) is programmed to brake suddenly to enable measurement of alertness, engagement, and arousal 
of the “subject vehicle” driver.  In our implementation, the lead-vehicle approach was used with a braking event 
integrated - both at baseline, and within the region of the SSS interaction for comparison. 
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Figure 6 – Lead vehicle approach for simulator distraction analysis 

 
After a brief “acclimation” excursion (Ronen & Yair, 2013), participants took part in two experimental drives: one 
with reduced information (“Low density”), and one with enhanced information (“High density”).  Driver behavior 
was observed within four “zones of interest” (Z1-Z4): Z1: baseline, Z2: dummy SSS, Z3: dummy slowdown event, 
and Z4: slowdown event with SSS.  Refer to Figure 7, which illustrates our experimental design (the subject vehicle 
is shown in purple).  Compared to High density (top of figure), Low density (bottom of figure) has reduced traffic 
vehicles (shown in orange) and reduced “traditional” roadway signs (shown in yellow); both by a factor of 
approximately one-half.  Both densities have two slowdown events involving the lead vehicle (shown in red), a 
“dummy” SSS (shown in green), and the proposed SSS that is being evaluated (shown in blue). 
 

 
Figure 7 – Experimental Design: Low- and High-density drives (notional) 

 
Participants were randomly assigned to either the “Exploratory” (EX) or the “Destination-specific” (DS) sub-cohort.  
The experimental environments were the same (i.e., Low- and High-density; randomized order), but driver instructions 
differed accordingly. EX instructions encouraged more navigational freedom, while DS guided direction towards an 
explicit destination.  Our preliminary hypothesis was that drivers that are searching for a specific destination could be 
more prone to cognitive distraction from the content of a proposed SSS than those who are more casually searching 
for general places of interest within a region.  Refer to Table 1. 
 

Table 1 – Decomposition of experimental sub-cohorts and drive tasks 
Cohort  

sub-groups 
Drive 

Number 
Driver Instructions 

(Randomized order for DS) 
Information density 
(randomized order) 

Exploratory 
(EX) 

1 
 For this drive, imagine that you are driving on the highway 

and are looking for interesting places to visit.  

Low density drive 

2 
  

High density drive 

Destination-
specific (DS) 

1 For this drive, imagine yourself on a road trip and you are 
looking for something to do in {destination 1}. 

Low density drive 

2 For this drive, imagine yourself on a road trip and you are 
looking for activities in {destination 2}. 

High density drive 
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Static/Dynamic Signs survey 
The Static/Dynamic Signs survey was issued post-experiment (using Google Forms) for assessment of navigational 
benefit vs. distraction potential with relation to the proposed SSS.  The survey was advised by published literature 
aimed to evaluate signage visibility (Garvey & Kuhn, 2004).  The first (static) segment (see Figure 8) implemented a 
manufactured artificial roadway sign to acclimate participants towards attributes upon which elaboration is requested.   
 

 
Figure 8 – Static Signs survey (practice segment) 

 
The second (dynamic) segment presented the proposed SSS (re: Figure 2) within successive animations ranging from 
1 to 5 seconds, designed to mimic “glance” durations that might be encountered at different travel speeds (i.e., a brief 
glance duration for higher speeds; a prolonged glance duration for slower speeds).  The goal was to measure the 
threshold whereby the SSS could be adequately interpreted while driving by.  After watching each video, participants 
were asked to document features and attributes that they were able to observe.  The proposed SSS has four logograms 
(Logogram #1 – Logogram #4) labelled in the sequence in which they physically appear on the sign (i.e., left to right). 
 
Simulator Maladaptation survey 
The Motion Sickness Assessment Questionnaire (MSAQ) (Gianaros et al., 2001) was issued to categorize any adverse 
impacts (e.g., maladaptation) of the simulator experiment.  The MSAQ is decomposed into four sub-categories of 
sickness symptoms; gastrointestinal (i.e., stomach), central (i.e., nervous system), peripheral (i.e., eyes/ears/skin), and 
sopite (i.e., sleepiness), which are then tabulated into a 0-100% “sickness” rating. 
 
MODELING METHODS 
 
In this section, we provide an overview of our primary modeling methods.  These include a modeling methodology 
for rating safe driver performance, as well as the associated statistical approaches for estimating the impact of the 
safety rating upon other potentially noteworthy self-rated participant characteristics. 
 
Modeling driving safety performance 
 
We developed a scoring model to quantify driver performance during simulated driving tasks.  The Safety Rating 
(SR) model is defined in Equation (1) and accompanying Table 2. 
 

SR = (WTS × TS) + (WTD × TD) + (WLD × LD) + (WBE × BE) + (WBA × BA) + (WBD × BD)             (1)                      
 

Table 2 – Score components for driver Safety Rating (SR) model 
Symbol Score component Units Rationale for score subcomponent Weight 

TS Travel speed (mph) Travel proximal to average observed speeds 30% 
TD Speed deviation (mph) Maintain constant travel speed 20% 
LD Lateral lane deviation (feet) Maintain lane-centric behaviors 20% 
BE Braking events (count) Total amount of braking applied 5% 
BA Braking severity (%) Harshness of applied braking events 15% 
BD Braking consistency (%) Braking uniformity across slow-down events 10% 

 TOTAL   100% 
 
Note that the weightings (W) selected for the SR model are user-defined and sum to 100% across the six model 
categories.  The values of the ratings (i.e., TS, TD, LD, BE, BA, AS) are calculated from a normal distribution of 
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aggregated driver performance across the entire experimental cohort.  Each category rating ranges from a maximum 
of 1 (i.e., values near the mean cohort value, µ) to a minimum of 0 (i.e., values that are multiple standard deviations 
σ from the cohort mean).  The SR model cumulatively scores each participant on a 0-100 scale.  
 
Modeling approaches for data analysis 
The safety rating is modeled using a random parameter ordinary least square regression with heterogeneity in means, 
which allows a model parameter to vary across observations, and supplies additional information regarding how other 
(unobserved) factors might impact mean values (Washington et al., 2020).  The Pearson (2008) correlation coefficient 
was also introduced as a normalized measurement of the covariance between variables.   
 
EXPERIMENTAL COHORT 
 
In this section, we describe our study cohort and experimental procedures for our IRB-approved protocol.  Likewise, 
we outline our taxonomy for data collection and analysis. 
 
Experimental cohort and procedures 
 
Our Institutional Review Board (IRB) approved study took place between December 2020 and February 2021.  
Participant recruitment was conducted via email distribution of a digital flyer.  Subject eligibility was based on age 
(i.e., 18-65), valid U.S. licensure, and (self-reported) no/low susceptibility to motion sickness in a simulated driving 
environment.  Approved participants were scheduled for a two-hour experimental session and were compensated with 
a $40 (Amazon) gift card.  COVID-19 safety and health procedures were prioritized in accordance with strict 
University guidelines.  Table 3 summarizes the full experimental task list. 
 

Table 3 – Experimental Task List 
Task order Activity Description Duration (minutes) 

1 Screening survey (completed before arrival) 0 
2 Overview of COVID-19 procedures 5 
3 Informed consent 10 
4 Experiment overview 5 
5 Demographic and experience survey 10 
6 Simulator safety debriefing & acclimation drive 10 
7 Administer MSAQ – participant evaluation (OK to proceed?) 10 
8 Experimental drive #1 (low/high density; counterbalanced) 15 
9 BREAK 10 

10 Experimental drive #2 (low/high density; counterbalanced) 15 
11 Static/Dynamic signs survey 20 
12 Experiment de-brief, participant compensation, departure 10 

 TOTAL EXPERIMENT DURATION: 120 
 
Data collection 
Table 4 outlines our experimental cohort (N=31 | DS: 17; EX:14), which was predominantly (71%) male.   The Table 
summarizes driver age and experience (green) and sensory-related statistics (light blue), which were self-reported at 
baseline using Likert ratings on a 1 (low) to 5 (high) scale, including mean (μ) and standard deviation (σ) for the 
highlighted variables.  Our cohort tended towards younger and less experienced drivers (i.e., average age of 
approximately 24 years, with just under 3 years driving experience).  Our intention was to recruit across a much wider 
age spectrum.  Due to the unfortunate timing of our study deployment, this plan had to be abandoned due to COVID-
19 limitations and sponsor-dictated time constraints.   Historically, younger adults tend to be more compliant to 
simulators (Gálvez-García, 2015); in this aspect, demographic limitations worked in our favor.   
 

Table 4 – Summary of cohort demographics and preferences 
Experience and Sensory-related 

Sub-cohort N Age (yrs.) Experience (yrs.) Video games Vision Memory Hearing 
DS 17 24.8 (6.6) 2.9 (0.8) 2.5 (1.3) 4.7 (0.5) 4.2 (0.8) 4.2 (0.7) 
EX 14 23.8 (4.4) 2.6 (0.8) 3.2 (1.1) 4.6 (0.5) 4.4 (0.8) 4.4 (0.5) 
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Table 5 summarizes the Indictors and Thresholds for our (binary) regression model, classified as: i) socio-demographic 
and ii) driving opinions and preferences, where the variables included were all identified as being statistically 
significant in the estimated models.   
 

Table 5 – Indicators for regression model 
Socio-demographic 

Indicator Binary Threshold μ σ 
Professional 1: if education is an Associate’s degree | 0: if otherwise 0.26 0.45 
Gender 1: if female | 0: if otherwise 0.29 0.46 
Age 1: if between 18 and 24 (inclusive) | 0: if otherwise 0.65 0.49 

Driving opinions and Preferences 
Indicator Binary Threshold μ σ 
Distraction 1: if daydreaming while driving is perceived as distracting | 0: if otherwise 0.26 0.44 
Conversation 1: if frequently converses with passengers while driving | 0: if otherwise 0.45 0.51 
Phone Use 1: if occupants use phones for conversations while driving | 0: if otherwise 0.23 0.43 
Accomplishment 1: if driver felt fulfilled with the assigned driving tasks | 0: if otherwise 0.87 0.34 

 
RESULTS AND DISCUSSION 
 
In this section, we decompose the presentation of our results into various categories.  These include quantitative 
performance derived directly from our SR model; statistical interrelationships determined from the linear regression 
and Pearson correlation approaches; self-report findings from the static/dynamic signs segment; and lastly, a brief 
statement related to observed simulator maladaptation. 
 
Quantitative performance (Driving Simulator) 
 
Various data were collected to determine impacts (i.e., navigation versus distraction) associated with the proposed 
SSS during the assigned driving tasks.  Figure 9 presents the Safety Rating (SR) calculations for each of the two sub-
cohorts (i.e., DS, and EX) across the two drive densities (i.e., low, and high) for the entire drive sequence.  It is 
anticipated that SR scores would reduce when comparing low to high density drives.  This prediction is based on the 
increased cognitive load and therefore increased potential for distraction within high density environments. A minor 
reduction was observed for the DS sub-cohort; however, a slight increase was observed for the EX sub-cohort, while 
observed variances increased for both sub-cohorts.  By way of comparison, Figure 10 targets performance data 
specifically for Zone 4, our primary region of interest.  As expected, SR scores reduced, due to heightened cognitive 
workload induced by the lead vehicle and increased SSS glance behaviors during information scanning.  Observed 
variances were larger for both DS sub-cohort drives, but smaller for both EX sub-cohort drives. 
 

  
Figure 9 – SR total scores Figure 10 – SR (Zone 4 only) 

 
From these plots, our preliminary hypothesis is confirmed: per the SR model, DS sub-cohort subjects were measured 
to be slightly more distractable (i.e., searching for an explicit destination) than members of the EX sub-cohort (i.e., 
searching for points of interest without a target destination). 
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Random parameter linear regression analyses 
Noteworthy model estimation results for the key covariates are summarized in Table 6.  Note that random parameters 
are assumed to be normally distributed while modeling. The Constant term (top of Table) defines the baseline of 
driving performance as 68.4 and 73.8 for High Density (HD) and Low Density (LD), respectively, which implies 
reduced driving performance for the HD condition, as expected.   
 
Under the HD drive condition, females are more likely to exhibit a reduced SR (i.e., 96.8% negative parameters), but 
young females (18-24, inclusive), per the heterogeneity in means model results, can potentially improve their safety 
ratings by 3.9%. This observation could suggest that females are more easily overwhelmed by the proposed SSS; 
supported by gender-based perceptions where females are often at elevated risk due to elevated emotional awareness 
and stress during vehicle operation (Hulse et al., 2018).  Also under the HD drive condition, those self-reported with 
an Associate’s degree were identified to have an elevated propensity for a reduced SR (i.e., 86.8% negative 
parameters), which can potentially be attributed to a variety of underlying factors.  
 
Participants who perceive successful task accomplishment were more likely to garner elevated safety ratings (i.e., 
98.3% positive parameters). This might be because overall driving satisfaction has a positive effect on proactive 
driving behavior, which in turn can positively influence safety perceptions and increased driver performance (Jiang et 
al., 2021).  Within the HD drive condition, the unobserved heterogeneity in means (3.0%) suggests that drivers who 
frequently converse with live passengers can achieve an elevated SR.  This observation could be attributed to a younger 
cohort being more capable of handling multitasking and complex information flow (Wechsler et al., 2018).  However, 
drivers who prefer using their phone for conversations achieved a reduced SR (-4.9%), even though they felt successful 
about their own driving.  This observation is confirmatory of previous observations that younger drivers often exhibit 
riskier behaviors coupled with an elevated perception of their driving performance (Barr et al., 2014). 
 
The model further suggests that drivers are more likely to attain a reduced SR if they perceive distraction while driving 
as being highly distracting (i.e., 87.3% negative parameters), but this trend was observed only within the LD scenario.  
This could imply that the LD scenario is more likely to result in mindlessness/daydreaming/being “lost in thought,” 
where the sudden presence of the proposed SSS might induce spontaneous distraction and impede driving 
performance.  Note that under the LD drive condition, driver characteristics (e.g., gender, age) did not impart 
significant influence on the SR, implying that in less strenuous drive conditions, the proposed SSS has the potential 
to deliver information to drivers (i.e., regardless of demographic characteristics) without impairing behaviors. 
 

Table 6 – Linear Model Estimation Results 
Variable/indicator High-density (HD) Low-density (LD) 

 coefficient t-stat coefficient t-stat 
Constant term (y-intercept) 68.4 50.3 73.8 64.1 

Heterogeneity in Means 
 coefficient t-stat coefficient t-stat 
Gender & Age 3.9% 2.6 n/a n/a 
Task Accomplishment & Conversation (w/ driving) 3.0% 3.6 n/a n/a 
Task Accomplishment & Phone Use (w/ driving) -4.9% -4.7 n/a n/a 

Aggregate distributional effect of random parameters 
 Above 0 Below 0 Above 0 Below 0 
Professional (Associate’s degree) 13.2% 86.8% n/a n/a 
Gender (female) 3.2% 96.8% n/a n/a 
Accomplishment (driving tasks) 98.3% 1.7% n/a n/a 
Distraction (daydreaming) n/a n/a 12.7% 87.3% 

 
Pearson Correlation matrices (Safety Ratings and Demographic data) 
We supplemented our statistical analyses with an observation of Pearson correlations between two independent data 
sources: i) measured simulator performance (safety ratings | SR) and ii) self-reported driver characteristics (i.e., as 
originally reported in Table 4 | light blue segment).  Figure 11 highlights physiological conditions that reflect 
participant self-reported sensory capabilities (e.g., vision, memory, and hearing) that are essential for the driving task, 
as well as self-reported propensity for video games, which could be a general indicator of proficiency in synthetic 
training environments (Cannon-Bowers & Bowers, 2010), including a driving simulator.  
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Figure 11 – Data correlates (physiological) 

 
Across both sub-cohorts (DS/EX) and drive densities (low/high), there is a positive correlation observed between SR 
and video game propensity (yellow series), which could indicate that frequent video game players are more adaptive 
to driving simulation.  Correlations were stronger for EX than for DS; this could indicate elevated alignment towards 
“spontaneous” (EX) rather than “directed” (DS) decision-making during roadway navigation.  Correlations related to 
cognition (i.e., memory; orange series) for both sub-cohorts were observed to be negative, and more significantly with 
the high drive-density condition.  This could suggest that participants with superior cognitive capability are prone to 
driving distractibility (i.e., being “lost in thought”) regardless of task assignment.  Aside from the EX/low condition, 
Vision (blue series) was identified to have a weak positive correlation with SR overall, and for the DS sub-cohort 
only, Hearing (gray series) was observed to have moderately strong positive correlations. 
 
Static/Dynamic Signs segment 
Figure 12 documents participant response frequencies related to each logogram of the proposed SSS. According to 
(NYSDMV, 2018), the two-second rule is advised for a suitable “space cushion” towards the road ahead.  While 
contemporary studies (e.g., Oviedo-Trespalacios et al., 2019) remain inconclusive, there is an emerging trend 
suggesting that roadside advertising can increase crash risk.  By these standards, in many situations, it would be unsafe 
for a participant to gaze at the proposed SSS for two or more seconds.  This “Safety Zone” is denoted by a vertical 
dashed line in the Figure.  Separated by this threshold, safe viewing durations (i.e., 1- and 2-seconds) are shaded green 
(i.e., left side of graph), and danger-prone durations (i.e., 3- and 5-seconds) are shaded red (i.e., right side of graph).   
  

 
Figure 12 – Dynamic Signs Glance durations for proposed SSS 
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At the longest glance duration (5 seconds), a majority of our study cohort (i.e., as many as twenty-five out of thirty-
one, or 80.6%) were able to fully- or partially interpret all four Logograms.  Observed disparities from one to the next 
could be related to the positioning of the logograms on the proposed SSS (i.e., drivers are more prone to read from 
left-to-right), or could be a result of the content/colors of the individual logogram graphics being more noticeable and 
relatable for a younger study demographic.  With a reduced glance duration of 3 seconds, cohort interpretation of all 
four Logograms reduced, ranging from 22/31 (70.9% | Logogram #1) down to 9/31 (Logogram #4).  At glance 
durations of 2 seconds, only twenty participants (64.5%) explicitly noticed Logogram #1, and only eight participants 
explicitly noticed Logogram #3, with greater reductions for Logograms #2/4.  As expected, these numbers reduce 
further at the one second glance threshold, where only twelve participants (38.7%) explicitly noticed Logogram #1, 
and many fewer noticed Logograms #2-4. 
 
Based on the Dynamic signs segment, Figure 13 displays response frequencies of participants when asked how 
distracting they found the proposed SSS to be, ranging from 1 (most distracting), to 5 (least distracting).  The cohort 
consensus (μ=3.12/5; σ=1.35) was that the proposed SSS was minimally distracting.  Figure 14 displays the response 
frequencies of participants when asked how useful (beneficial) they found the proposed SSS to be towards successful 
navigation, ranging from 1 (least helpful), to 5 (most helpful).  For this query (μ=2.54/5; σ=1.47), the cohort consensus 
reported the proposed SSS was slightly less than beneficial towards roadway navigation. 
 

  
Figure 13 – SSS Distractibility Figure 14 – SSS Usefulness 

 
Simulator sickness survey  
Figure 15 presents findings related to the MSAQ, with the overall sickness score (0-100) (red), as well as the four 
subcategory ratings (green), as percentages.  Sickness-related symptoms (μ=2.66% | σ=3.82) were not significant, 
indicating elevated tolerance to the simulator.  Category variances were comparatively high across the entire cohort, 
as (N=14, or 45.1%) reported no adverse symptoms at all, while the remainder of the cohort (N=17, or 54.9%) reported 
some sickness symptoms.  These observations are not unexpected, as younger adults tend to have elevated tolerance 
for artificial environments (Keshavarz et al., 2018). 
 

 
Figure 15 – MSAQ ratings 
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CONCLUSIONS AND FUTURE WORK 
 
Our primary objective was to employ high-fidelity simulation to evaluate driver performance related to general safety 
(i.e., distraction potential vs. navigational benefit) from driving interactions with a proposed Specific Service Sign 
(SSS).  Participants were randomly assigned to one of two sub-cohorts that defined their drive tasks: Exploratory (EX) 
or Destination-specific (DS), across two drives with varying information density (i.e., “low” and “high”) within the 
simulated driving environment.  A Safety Rating (SR) model was developed to quantify driver tendencies related to 
the proposed SSS.  Degraded performance was moderately observed in DS related to EX drivers, which may indicate 
that members of the DS sub-cohort were more distracted (i.e., searching for an explicit destination) than members of 
the EX sub-cohort (i.e., environment scanning without target destination).   
 
From the linear regression analyses, deeper insights were gained.  Increasing environment density in the vicinity of a 
proposed SSS has the potential to impair safe driving performance.  Regarding gender, females were observed to be 
more vulnerable to high density environments. The proposed SSS should therefore be simplified to reduce any gender 
disparity due to enhanced cognitive workload.  Finally, drivers (and particularly those prone to risky driving habits) 
might require further education to enable them to capture information from the proposed SSS more safely and timely.  
Positive Pearson correlations were observed between safety rating and video game proficiency, which could indicate 
natural adaptivity towards driving simulation among frequent gamers.  Negative correlations were observed between 
SR and memory, which confirms findings from the linear regression analyses -- participants with superior cognitive 
capability are more likely to be frequently daydreaming (i.e., lost in thought) during a navigation task, and thus more 
distractable by the SSS.  A proposed SSS should therefore deliver information effectively to make drivers confident 
in their navigation choices to promote safe driving.    
 
Our supplementary Dynamic signs segment indicated that most drivers required 3-5 seconds to safely interpret the 
proposed SSS navigational attributes which exceed the accepted “2 second rule” guideline for safe following distance.  
Furthermore, the proposed SSS was rated as being low-moderate in terms of distraction potential but was also rated 
as being slightly below average in terms of navigation usefulness.  Finally, simulator sickness was rated as not 
significant among our cohort. 
 
Our primary findings illuminate how drivers interact with service signs and the subsequent impact on their 
performance. Extensions of the current work are underway with a particular focus on the physiological implications 
of our findings. Electrodermal Activity (EDA) measures electrical changes when cognitive workload increases, and 
Photoplethysmography (PPG) measures oximetry, from which heart rate variability can be derived (Seitz et al., 2012).  
Likewise, recent advancements associated with eye tracking enable an improved understanding of visual and thought 
processes (Li et al., 2021) and provide deeper insights into real-time human driving behaviors (Brunyé et al., 2019).  
Key correlates from these datasets will be analyzed and reported in a follow-up to the present dissemination. Lastly, 
while our investigation focused on the SSS, we recommend that future studies consider evaluating the effects of other 
roadway signs, traffic control devices, and driver information systems. 
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