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ABSTRACT 

 

Human Readiness Levels (HRLs) assess how mature and robust the human-centered aspects are in a system’s 

development process (ANSI/HFES, 2021). Designed as an adjunct to Technology Readiness Levels (TRLs), the 

HRLs are a measure of the readiness of the technology for use by human operators and maintainers. The U.S. 

Department of Defense (DoD) is currently in the process of adopting the ANSI/HFES-400 as a Tier 1 non-

government standard, as human factors are critical for the safety and effectiveness of a broad range of systems. This 

includes systems that comprise Artificial Intelligence (AI) components, where failures like algorithmic bias (e.g., 

COMPAS recidivism tool) or automation overreliance (e.g., Tesla Autopilot) underscore the consequences of 

inadequate human integration. Yet developers often prioritize technical performance over socio-technical alignment 

by risking safety, equity, and user trust. This paper adapts the HRL framework to AI-intensive systems via a dual-

exit criteria model which require concurrent technical validation (e.g., model accuracy, scalability) and social 

validation (e.g., interpretability, bias mitigation, user trust) at all nine HRL stages. We demonstrate its application 

through a maintenance prioritization case study, where an ML model reduces workflow subjectivity while 

preserving human oversight. The framework provides actionable checkpoints—from data collection to real-world 

deployment—to embed human-centricity throughout the lifecycle. HRLs have the potential to become a component 

within broader governance efforts for AI to transform "human-centered AI" from aspiration to measurable 

engineering practice. Challenges in dynamic AI contexts (e.g., continuous learning) and future extensions are 

discussed.  
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INTRODUCTION 

 

The HRL framework gauges how effectively human factors are integrated and matured during system development 

(ANSI/HFES, 2021). It is evident that HRLs must be extended to AI-specific scenarios as AI systems get more 

ingrained in important activities. Recent movement in both practice and policy focus attention on the consequential 

exigency of including human elements into the creation and execution of AI-based systems. Conspicuous errors of 

AI applications in high-risk contexts have pointed up how inadequate focalization on human readiness might 

compromise equity as well as safety. For instance, the COMPAS recidivism algorithm was infamous for showing 

racial bias in its risk assessments. Whereupon it was disproportionately affecting minority groups and generating 

general worry over algorithmic justice (Angwin et al., 2022). Alike, some scrutiny testifying to user overreliance on 

automation in the omission of appropriate human oversight and interface design (Hawkins, 2024) have linked 

Tesla's Autopilot system to many accidents. These cases are not isolated technical failures but indeed feature a more 

collective deficiency. AI systems are oftentimes developed and deployed without enough addressing of decisive 

human factors (Yalim & Handley, 2023).  

 

Such failures might be socio-technical rather than only technical in character—that is, problems resulting from a 

lack of integration between human roles and automated capabilities. They expose the results of ignoring how 

AI tools interact with human cognition, behavior, and organizational setting. In fields like healthcare, defense 

operations, and infrastructure maintenance—where decision accuracy, responsibility, and safety are thoroughly 

imperative (Erturun et al., 2024). Thereby, effective socio-technical integration calls for making sure AI 

technologies are not only functionally precise but also understandable, controllable, and trustworthy to their human 

counterparts (Handley & Yalim, 2024; Yalim & Handley, 2025). 

 

Regulatory frameworks all around now formally reflect this increasing consciousness. Evolving legislative 

environments mirror this more and more. The AI Act of the European Union places strict limitations on "high-risk" 

AI systems (European Parliament & Council, 2024). This necessitates clear human-centered assessments at every 

stage of design and implementation. Likewise, minimizing unintentional bias and maintaining human control and 

accountability are key components of the U.S. Department of Defense (2022). In this context, a lifecycle-oriented 

framework for bringing together human-system integration throughout AI development is provided by HRLs. HRLs 

can be used as a governance and engineering tool to make sure that human-centered considerations are not an 

afterthought but rather a fundamental component of AI system readiness by implementing both technical and social 

validation checkpoints at every stage, from data preparation and model design to real-world deployment.  

 

As systems evolve to include virtual team members, autonomous components, and adaptive technologies, the HRLs 

must be able to assess socio-technical systems that include AI components (Yalim, 2024). Researchers have 

highlighted that the integration of algorithms into human workflow remains a substantial challenge; developers may 

not fully consider the impact that AI has on human processes (Asan & Choudhury, 2021). Including Machine 

Learning (ML) models into systems provides the ability to analyze data, automate tasks, and enhance decision-

making capabilities; these models can process large volumes of data to make predictions and offer solutions.  

 

Nevertheless, these technological developments need to be accompanied by systematic assessments of human 

compatibility, which HRLs are uniquely positioned to facilitate. Therefore, this paper provides an example that 

illustrates the use of the HRLs during the development of a ML algorithm, a system component designed to expedite 

a maintenance prioritization process. Incorporating an ML model into this process can reduce the subjectivity caused 

by different human interpretations while minimizing human workload. Applying the HRLs to this socio-technical 
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system evaluation can assess both the degree of consideration of the human operator but also monitoring the ML 

model for a continuous fit as a system component.  

 

BACKGROUND 

 

Current maturity assessment frameworks for developing technologies promote technological preparedness, which 

sometimes comes at the expense of human-system integration. Commonly used frameworks, such as Technology 

Readiness Levels (TRLs) (NASA, 2017) and Manufacturing Readiness Levels (MRLs) (DoD, 2020), provide 

defined criteria for evaluating the feasibility, performance, and scalability of technologies at various stages of 

development. They do this, however, with little or no consideration given to the human factors driving the system. 

Similarly, emerging AI tools such as the AI Readiness Index (Oxford Insights, 2024), which assesses institutional 

readiness for AI adoption, and ML Model Cards (Mitchell et al., 2019), which help transparency in model reporting, 

deliver intuitions into governance and documentation. Yet, these tools do not have a way to figure out how people 

use, trust, or act on AI systems in complicated settings. What is still missing is a framework that puts human 

readiness on the same level as technical readiness, especially in socio-technical systems where both need to grow at 

the same time. 

 

The Human Readiness Levels (HRLs) framework has the potential to fill in this important gap by putting the social 

and technical aspects of system maturity into a set of rules. The HRL framework was created to go along with TRLs. 

It has a nine-level scale that rates how well a system has met human needs, capabilities, limitations, and behavioral 

patterns during its development. This fits with the growing calls from academics and standards groups for AI 

development that is in line with ethics. For instance, Floridi et al. (2018) contend that AI cannot make real progress 

unless it finds a balance between technical performance and social values including fairness, openness, and 

responsibility. At the same time, real-world studies have shown that even the high performing algorithms can be 

rejected by users if their decision-making processes seem unclear or do not match up with human judgment. This is 

known as "algorithm aversion" by Dietvorst et al. (2015). 

 

The process of integrating ethical risk assessments into the design of intelligent and autonomous systems has started 

with initiatives like IEEE Standards Association (2021). Nevertheless, these frameworks frequently fail to provide a 

step-by-step, practical methodology that can be incorporated into engineering practice. By providing phase-specific 

criteria that evaluate human-system integration directly, HRLs, on the other hand, offer a retrospective evaluation 

mechanism in addition to a prescriptive design roadmap. 

 

Human Readiness Levels 

 

The HRL framework complements Technology Readiness Levels (TRLs) by explicitly addressing human-system 

maturity. The nine-level scale provides a mechanism to assess the degree that human-focused requirements have 

been incorporated into design decisions (See, 2021). Each HRL has a series of supporting questions that determine if 

the necessary human-system requirements at that level have been addressed (Handley, See & Savage-Knepshield, 

2023). 

 

The HRLs support integration of the human user or operator into the systems engineering effort, which is critical to 

the design of successful systems. HRLs have the potential to minimize the cost of design changes through early 

identification of human issues and reduce human error in fielded systems by tracking the mitigation of identified 

issues through subsequent HRL assessments (Salazar et al., 2021). The HRLs are grouped into three phases and 

decomposed into three distinct HRLs. This mimics the Technology Readiness Levels (TRL) widely used in 

government and industry. 

 

Human Readiness Level Scale (ANSI/HFES, 2021) 

 

Basic Research and Development: Scientific research, analysis, and preliminary development are conducted. This 

phase culminates in a validated proof of concept that addresses human needs, capabilities, limitations, and 

characteristics. 

• HRL 1: Basic principles for human characteristics, performance, and behavior observed and reported. 

• HRL 2: Human-centered concepts, applications, and guidelines defined. 
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• HRL 3: Human-centered requirements to support human performance and human-technology interactions 

are established. 

 

Technology Demonstrations: The technology is demonstrated at increasing levels of fidelity, first in the laboratory 

and later in relevant environments. This phase concludes with demonstration of a representative system in a high-

fidelity simulation or actual environment, with evaluation of human systems designs provided by representative 

users. 

• HRL 4: Modeling, part-task testing, and trade studies of human systems design concepts and applications 

completed. 

• HRL 5: Human-centered evaluation of prototypes in mission-relevant part-task simulations completed to 

inform design. 

• HRL 6: Human systems design fully matured and demonstrated in a relevant high-fidelity, simulated 

environment or actual environment. 

 

Full-Scale Testing, Production, and Deployment: Final testing, verification, validation, and qualification occur, 

with human performance evaluations based on representative users. This phase concludes with operational use of the 

system and continued systematic monitoring of human-system performance. 

• HRL 7: Human systems design fully tested and verified in operational environment with system hardware 

and software, and representative users. 

• HRL 8: Human systems design fully tested, verified, and approved in mission operations, using completed 

system hardware and software and representative users. 

• HRL 9: System successfully used in operations across the operational envelope with systematic monitoring 

of human system performance. 

 

METHODOLOGY  

 

Framework Adaptation: Dual-Exit Criteria for AI Systems 

 

In order to apply the HRLs framework to AI systems, this paper presents a dual-exit criteria model. This adaptation 

recognizes that AI systems function within socio-technical ecosystems, in contrast to conventional system readiness 

assessments that place an emphasis on technical functionality alone. Thus, two concurrent and equally important 

validations—technical readiness and social readiness—are used to assess each HRL level. As it relates to its 

intended operational context, the technical validation component evaluates whether the AI model or system 

component satisfies key performance metrics. Simultaneously, the social validation component assesses the 

systematic treatment of human-centric considerations.  

 

All three of the HRL phases—Basic Research and Development (HRLs 1–3), Technology Demonstration (HRLs 4–

6), and Full-Scale Deployment (HRLs 7–9)—have different goals and integration challenges, and this dual-

validation approach corresponds with the full development lifecycle of AI systems. Foundational tasks like data 

collection, feature engineering, model selection, and preliminary human-centered requirement elicitation are 

prioritized in the Basic R&D phase (HRLs 1–3). While social checkpoints concentrate on determining stakeholder 

needs, evaluating interpretability requirements, and assessing the risk of ingraining bias in system assumptions, 

technical checkpoints in this stage guarantee the relevance, completeness, and quality of input data. The system 

moves from conceptual modeling to iterative prototyping and early validation during the Technology Demonstration 

phase (HRLs 4–6). In order to reach desired performance metrics, this stage's technical checkpoints include model 

training, tuning, and verification in simulated or semi-controlled environments. At the same time, social validation 

evaluates user interaction with early-stage prototypes, focusing on human-in-the-loop compatibility. For expressive 

feedback and improvement, this provides confidence that AI outputs are accurate and understandable to end users. 

The system is exposed to real-world scenarios during the Full-Scale Deployment phase (HRLs 7–9). Tracking 

performance under operational loads, identifying degradation, and guaranteeing dependability in mission-critical 

situations are all part of technical validation. Social validation also includes long-term assessments of the field's user 

experience. At this point, ethical auditing and feedback systems are essential for ongoing system development while 

maintaining human oversight. This adapted HRL framework functions as a methodology that ensures every system 

maturity transition is based on both the accomplishment of functional goals and the confirmation that the AI system 

is still suitable and reliable for its human stakeholders.  
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Human Readiness Level Example: Machine Learning Models 

 

The example illustrates the use of the HRLs during the development of a Machine Learning (ML) model included as 

a system component in a maintenance prioritization work process. The HRLs include specifications for intelligent 

technology where the human component is the authority rather than the user (See et al., 2018); this example expands 

on that by viewing the ML model through both a human and a technology perspective.  

 

Embedding an ML model into a system is a multi-step process including assessing system compatibility, preparing 

data, training models, deploying them within the system, and continuously monitoring performance for optimization. 

Socio-technical system evaluation in this case involves not just evaluating the fit of the system with the human 

operator but also monitoring of the ML model to ensure a continuous fit as a system component. Additionally, ML 

models also require an assessment of societal aspects of its use of data, such as trust, transparency, and ethics. The 

HRLs can evaluate effective human use across the entire lifecycle of the AI-assisted system.  

 

The maintenance prioritization example (Kovacic, 2024) illustrates the applicability of the HRLs to an AI-assisted 

system. In this example, different types of maintenance employees, including engineers, technical staff, and 

managers, have access to a large amount of system failure records. This makes the maintenance work order 

prioritization process complex and time-consuming, as it depends on the humans' interpretation of the maintenance 

records, which is influenced by varying levels of experience and knowledge. Incorporating an ML model into the 

process of maintenance prioritization can reduce the subjectivity caused by different human interpretations. The goal 

of automation is to reduce subjectivity while minimizing human workload. 

 

The maintenance prioritization process example is used to describe how the HRLs can assist in the systematic 

incorporation and evaluation of ML models into traditional systems. The following paragraphs describe how each 

level of the HRLs can be extended to an AI-assisted system. Additionally, the exit criterion for each level is 

described in two parts –the requirement for the model or data (technical) and the human (social) considerations.  

 

HRL 1 ensures that basic principles for human characteristics, performance, and behavior are observed and reported. 

For AI-assisted systems, the focus of HRL 1 is on the data and initial human-centric requirements definition. The 

exit criteria for HRL 1 include a thorough understanding and characterization of both the data needs for the ML 

model and the essential human behaviors, capabilities, and limitations that are relevant to the developing concept or 

proposed applications must be demonstrated. For maintenance prioritization example, the operational effectiveness 

of the model is tied to the qualitative and quantitative attributes of the data it processes; in instances where data 

information is not adequately robust, the model may not yield satisfactory outcomes. Thus, the identification of the 

types of maintenance records and failure narratives, which are the inputs to the ML model, must be completed 

(technical). Additionally, an initial assessment is conducted, focusing on the tasks and roles of maintenance 

professionals, such as engineers and managers, who will engage with the system. This preliminary exploration may 

involve deciphering their interpretative constraints related to maintenance records and their adeptness in 

manipulating AI-supported tools (social). 

 

HRL 2 guarantees that human-centered concepts, applications, and guidelines are defined. For AI-assisted systems, 

the focus of HRL 2 is on data processing and human-centered design guidelines. The exit criteria for HRL 2 include, 

first, completion of data acquisition, labeling, cleaning, text processing, and feature extraction, and second, 

establishment of key human-centered design principles, standards, and guidance for human interaction with the 

technology. For maintenance prioritization example, the procurement and labeling of maintenance logs, followed by 

text manipulation and feature extraction, are executed to condition the data for model training (technical). The 

appropriate design guidelines, which will represent the interaction of the ML model with maintenance personnel, are 

identified. This might include a conceptual user interface that conforms to ergonomic standards and satisfactorily 

conveys ML outputs to the users (social). 

 

HRL 3 requires that human-centered requirements to support human performance and human-technology 

interactions are established. In the case of AI-assisted systems, HRL 3 focuses on model selection, design, and 

human-centered requirements. The exit criteria for HRL 3 include, first, a suitable ML model must be determined 

and the accompanying design of experiment created, and second, the requisite human-centric analyses must be 

conducted, resulting in the identification of human-centric requirements and key performance parameters that are 

integrated into overarching system requirements. For maintenance prioritization example, multiple ML models are 
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identified, and experiments are structured for these models to identify the optimal model along with its 

hyperparameters (technical). The requirements that govern how the outcomes will be communicated to maintenance 

personnel are also identified. This might involve defining the modalities of notifications or alerts that will be utilized 

to inform staff regarding the urgency of various maintenance tasks (social). 

 

HRL 4 requires the completion of modeling, part-task testing, and trade studies of human systems design concepts 

and applications. In the case of AI-assisted systems, HRL 4 focuses on model training, tuning, and part-task human 

testing. The existing criteria for HRL 4 include, first, adequate training and calibration of the ML model must be 

completed to satisfy predetermined performance metrics, and second, the assessment and characterization of human 

interactions and performance utilizing analytical instruments, modeling methodologies, and partial task testing with 

swift prototypes must be evaluated. For the maintenance prioritization example, the ML model, applied to the 

processed maintenance records, undergoes training and fine-tuning to achieve optimal performance (technical). 

Then, partial task testing with maintenance personnel, utilizing a preliminary prototype of the model completed. 

This might encompass simulated scenarios where staff are tasked with prioritizing maintenance tasks based on these 

scores (social). 

 

HRL 5 assesses the human-centered evaluation of prototypes in mission-relevant part-task simulations to inform 

design. In the case of AI-assisted systems, HRL 5’s focus remains on the preliminary model validation/testing and 

mission-relevant prototype testing. The exit criteria for HRL 5 include, first, the initial validation and examination of 

the ML model within a simulated or regulated environment should be completed, and second, an assessment of the 

human interactions and performance should be completed while interfacing with the evolving system prototype. For 

the maintenance prioritization example, the ML model is validated within a simulated environment, utilizing a 

subset of maintenance records to ensure that the model’s outputs are congruent with expert evaluations (technical). 

Additionally, mission-pertinent partial-task simulations, involving maintenance personnel and utilizing a high-

fidelity prototype, are executed. This might encompass simulated scenarios where staff are tasked with prioritizing 

maintenance tasks based on outputs generated by the validated model (social). 

 

HRL 6 evaluates that the human systems’ design is fully matured and demonstrated in a relevant high-fidelity, 

simulated environment or actual environment. In the case of AI-assisted systems, the focus of HRL 6 is on system 

integration, verification, and human-centric maturity. The exit criteria for HRL 6 include, first, successful 

integration of the ML model as a component into the overall system and confirmation of its functionality must be 

completed, and second, the evaluation of human interactions within the context of high-fidelity simulated or actual 

environments, utilizing a functional and realistic prototype, representative users, and a comprehensive array of usage 

scenarios and tasks must be completed. For the maintenance prioritization example, the ML model is integrated into 

the existing maintenance work order system, followed by a verification of its functionality. This ensures that the 

outcomes derived from the ML model are accurately influencing the system’s prioritization algorithms (technical). 

Then, execution of high-fidelity simulations or real-world tests with maintenance personnel, utilizing the integrated 

system, is conducted. This might span a spectrum of scenarios, from standard maintenance tasks to emergency 

situations, to evaluate the efficiency of the integrated model in aiding work order prioritization (social). 

HRL 7 evaluates that the human systems design is fully tested and verified in an operational environment with 

system hardware and software including representative users. In the case of AI assisted systems, the focus of HRL 7 

is on operational testing and human-centric validation. The exit criteria for HRL 7 include, first, extensive testing of 

the ML model within an actual operational environment must be completed to ascertain adherence to all 

performance and safety criteria, and second, the assessment and characterization of human interactions and 

performance within an operational environment must be completed, employing the final development system, 

representative users, and a comprehensive spectrum of usage scenarios and tasks. For the maintenance prioritization 

example, the ML model should be subjected to testing within a live operational environment, utilizing authentic 

maintenance records and work orders. Performance metrics, such as accuracy, precision, and recall, in addition to 

safety metrics like false positives and negatives, should be evaluated (technical). Additionally, operational tests 

should be conducted with maintenance personnel, utilizing the final integrated system within a live environment. 

This might span a variety of scenarios, from standard maintenance tasks to emergency situations, to evaluate the 

efficiency of the integrated model in assisting work order prioritization (social). 

 

HRL 8 evaluates that the human systems’ design is fully tested, verified, and approved in mission operations, using 

completed system hardware and software and representative users. In the case of AI assisted systems, the focus of 

HRL 8 is still on continuous monitoring and improvement. The exit criteria for HRL 8 include, first, ongoing 
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monitoring and periodic updating of the ML model must be completed to ensure it continues to meet performance 

and safety criteria, and second, the evaluation and characterization of human interactions and performance with the 

actual system in mission operations during the full range of usage scenarios and tasks completed by representative 

users must be completed. For maintenance prioritization example, monitoring protocols should be established to 

regularly assess the performance of the ML model. This could include automated alerts for performance degradation 

and mechanisms for model retraining (technical). Additionally, extensive testing of the integrated system in mission 

operations should be completed, involving representative users and a full range of scenarios. This could include 

emergency situations to assess how effectively the integrated ML model aids in work order prioritization (social). 

 

HRL 9 evaluates that the system is successfully used in operations across the operational envelope with systematic 

monitoring of human system performance. In the case of AI-assisted systems, this HRL is focused on ethical, 

societal, and operational monitoring and evaluation. The exit criterion for this HRL is twofold – the first focuses on 

the system itself and the ongoing monitoring, testing, and evaluation of the fielded system to ensure it supports the 

mission as intended. The second criterion is focused on the impact of the use of AI through the assessment and 

mitigation of ethical and societal implications, including data privacy, fairness, and transparency. For the 

maintenance prioritization example, the ML model would undergo ongoing human systems monitoring to ensure 

that the intended levels of operational performance are achieved. This could include periodic evaluations involving 

human systems experts to assess the effectiveness of system outcomes. Additionally, these evaluations would ensure 

that the ML model does not introduce bias in the maintenance work order prioritization process. This could involve 

periodic audits of the model's decision-making process and outcomes (technical). Additionally, the ethical 

considerations include a thorough review of data usage, ensuring that data privacy is maintained, and that the 

model's decisions do not unfairly favor any group. This could involve a detailed analysis of the model's predictions 

and decision-making processes to ensure transparency and fairness in all operations (social). 

 

CHALLENGES AND SOLUTIONS FOR HRLs IN AI-INTENSIVE SYSTEMS 

 

The most fundamental challenge is the evolving needs of the users themselves. Workflow, team composition, 

procedural practices, and operational conditions all evolve continually around maintenance management, say, as 

organizations, regulations, and technology develop. Any valid evaluation using HRL conducted previously may no 

longer accurately represent the manner users are employing the system today. To preserve fidelity between system 

functionalities and human needs, HRL analysis would have to be treated as live assessments—subject to revision 

with large system upgrades, role redefinition, or reconfiguring the workflow. 

 

A second challenge concerns the operational reality that AI models are non-stationary and continuously retrained, 

which can unpredictably alter behavior, prediction logic, or user interpretability. These changes can reduce the 

consistency of interaction patterns between humans and AI and erode user trust. Another solution is to incorporate 

version-specific human factors documentation, such as Model Cards (Mitchell et al., 2019), directly into the HRL 

framework. This makes it possible to track explicitly the usability, explainability, and measures of trust and to 

reconfirm them on each iteration of the AI system. A third, increasingly pressing concern is the build-up of ethical 

debt—the gradual appearance of unintentional skews or biases not evident at the time of initial deployment. Skews 

may get created through evolving infrastructural data, for instance, to disproportionately deprioritize mature assets 

or certain operational settings within maintenance priority schemes. To handle such concerns, it is necessary to 

transition to proactive instead of reactive governance paradigms. Integrating mechanisms for compliance at the level 

of HRL 9 into DevOps lifecycles—for instance, automated fairness checks or bias detection routines built into 

CI/CD (continuous integration/continuous deployment) processes—can maintain ethical watchfulness across the 

system's operating lifespan. 

 

Collectively, such adaptations—embedded ethical automation, model-aware documentation, and periodic 

reassessment procedures—empower the HRL framework to sustain its validity and fidelity to changing user 

contexts, ongoing learning, and more autonomous AI behaviors. By doing so, they evolve HRLs from checklists for 

development to dynamic governance instruments whose technical efficacy is supplemented with long-term human-

system veracity. 
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FUTURE DIRECTIONS  

 

Any future deployment enveloping HRLs should expand from static evaluations to a dynamic and context-aware 

roadmap, which involves human-centric evaluations throughout the lifecycle of the system. This requires a move 

away from one-time assessments towards more iterative, milestone-aligned evaluations, especially for systems that 

operate under conditions of lifelong learning, environmental variation, and evolving human-AI role entanglement. 

 

For adaptive AI systems, that are getting periodically retrained or optimized based on the new data streams, an HRL 

checkpoints must be revisited with every significant update. These reassessments are needed to preserve human-

system alignment—including trust calibration, interpretability, and task allocation—while the system’s internal logic 

changes. Without conscious consideration, there is a risk to degrade user trust, exacerbate bias, or to mismatch 

automated behavior from a user’s goals, particularly in safety-sensitive domains. Similarly important is their use for 

collaborative human-AI teams where the user-AI agent relationship is not static, but "co-evolves" over time. In such 

settings, AI could evolve from being a passive decision support tool to an active collaborator or team member. This 

shift requires different forms of socio-technical coordination such as real-time feedback loops, adaptive interface 

design, and emergent role clarity. When interpreted with respect to these dimensions, HRLs provide a systematic 

approach to both formalize, and monitor, interaction protocols ensuring that transparency, shared situational 

awareness and mutual intelligibility are maintained among human and machine actions. 

 

Finally, it is through these forward-looking directions that the HRL framework will continue to substantiate its 

status, not only as a way to evaluate readiness, but to be a living blueprint for responsible design of AI as the ways 

in which technical excellence meets timeless human-centered and entrenched human values. 

 

LIMITATIONS OF THE STUDY 

 

The application of HRLs framework reveals several limitations that warrant consideration. The domain-specific 

nature of the illustrative maintenance prioritization case study may raise questions about the framework's 

generalizability across fundamentally different contexts such as real-time autonomous navigation, clinical 

diagnostics, or generative AI applications. Domain-specific variables—including risk criticality, decision urgency, 

and error consequences—may necessitate substantial adaptations of the dual-exit criteria, which have yet to be 

systematically explored. Furthermore, the framework faces inherent tensions when applied to dynamic AI systems 

characterized by continuous learning and adaptation. The evolving nature of these systems challenges static HRL 

validation assumptions, as performance drift, emergent biases, or altered interaction patterns may develop silently 

between formal reassessments. This dynamism complicates version control for socio-technical documentation (e.g., 

Model Cards) and introduces subjectivity in defining thresholds for "significant updates" that warrant HRL re-

evaluation, particularly for online learning systems (Yalim & Handley, 2025).  

 

The qualitative nature of many social validation criteria—such as "appropriate interpretability," "trust calibration," 

or "ethical compliance"—presents another limitation due to the absence of standardized, objective metrics. This 

subjectivity complicates consistent assessment, especially during early HRL phases where prototypes are immature, 

and hinders cross-organizational benchmarking. Implementing the dual-exit criteria also demands considerable 

resources, requiring parallel expertise in AI engineering and human factors science, extending development cycles 

through iterative human-in-the-loop testing, and necessitating sustained funding for longitudinal monitoring 

(particularly HRLs 8-9). This resource intensity may render comprehensive HRL adoption impractical for smaller 

organizations or agile development teams. Scalability poses an additional challenge for complex AI systems 

featuring multiple interdependent components (e.g., ensemble models, multi-agent architectures). Mapping socio-

technical interfaces across subsystem boundaries and applying HRLs holistically becomes combinatorially complex 

without established methodological guidance. 

 

The framework’s focus on anticipated human-AI interactions creates a gap in addressing unpredictable emergent 

behaviors. Examples include operator complacency developing in mature systems (HRL 9), unforeseen patterns of 

system misuse, or novel failure modes arising from complex human-AI co-adaptation, which may evade detection 

by predefined checkpoint criteria. Cross-cultural validity represents another constraint, as the current social 

validation criteria largely assume universal human factors principles. Variations in cultural norms regarding 

automation acceptance, decision-making hierarchies, and transparency expectations (e.g., contrasting individualist 

versus collectivist contexts) are underexplored and could significantly impact framework effectiveness globally. 
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While HRLs support alignment with regulations like the European Parliament & Council (2024), the practical 

mapping of specific legal mandates (e.g., "fundamental rights impact assessments") to corresponding HRL 

checkpoints requires further articulation. Regulatory fragmentation across jurisdictions further complicates 

standardized implementation. 

 

A critical limitation is the current reliance on case studies and theoretical alignment for validation. Robust empirical 

evidence quantifying the HRL framework's impact—such as reductions in human error rates, operational cost 

savings attributable to early human factors integration, or longitudinal trends in trust calibration metrics across the 

system lifecycle—is needed to substantiate claims about its return on investment. Finally, the dual-exit model 

encounters unique challenges when applied to non-deterministic generative AI systems (e.g., LLMs). The inherent 

unpredictability of outputs complicates traditional technical validation, risks like hallucinations defy conventional 

reliability metrics, and social criteria such as "transparency" often conflict with the proprietary opacity of foundation 

models, revealing a frontier where the framework may require fundamental rethinking. 

 

CONCLUSION 

 

Our exploration of HRLs for AI-intensive systems reveals the following insight: technical capability alone cannot 

guarantee operational success. The maintenance prioritization case study demonstrates concretely how HRLs bridge 

the socio-technical gap—not as an afterthought, but as a structured framework embedded throughout development. 

By defining dual exit criteria (technical validation of AI models + social validation of human integration) at each 

maturity level, we have shown how HRLs force explicit accountability for human factors that often get 

overshadowed by algorithmic performance. 

 

This dual-path approach directly addresses recurring failures in AI deployment—from biased recidivism algorithms 

to autonomous vehicle accidents—where inadequate human integration compromised safety and equity. When ML 

models handle maintenance prioritization, for instance, HRLs ensure the system reduces subjectivity without 

eroding human oversight or introducing new risks. The framework’s value is further underscored by its real-world 

traction: the U.S. DoD’s adoption of ANSI/HFES-400 as a Tier 1 standard signals a watershed shift toward 

mandating human readiness as non-negotiable. 

 

Yet our work is not a panacea. As discussed, dynamic AI systems demand adaptive refinements to the HRL 

framework. What remains undeniable is this: Until AI is evaluated as rigorously for human compatibility as for 

technical accuracy, deployments will keep stumbling over preventable socio-technical pitfalls. We argue HRLs offer 

the scaffolding to make “human-centered” more than a buzzword—transforming it into measurable, auditable 

engineering practice. 

 

Future work must expand validation beyond maintenance domains and develop standardized metrics for social 

criteria. But as AI permeates high-stakes domains—healthcare, defense, infrastructure—this framework provides an 

actionable blueprint for building systems that are not just capable, but responsible. 
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