
Tabu Search with Reinforcement Learning for Location Problems

Kuidong Li,1, Lydia Wallis,2, and Rex K. Kincaid3

1Department of Mathematics, William & Mary
2Computer Science Department, William & Mary
3Department of Mathematics, William & Mary

August 15, 2025

1 Introduction

The similarities and differences between a tabu search heuristic coupled with unsupervised rein-
forcement (probabilistic) learning and a tabu search heuristic that incorporates a long-term memory
function are explored. Computational experiments with two discrete location problems provide the
test bed for the comparison. The first, the k-median problem, is a well studied location problem
that seeks to determine the set of facility locations that minimize the average travel distance to
the points served by the facilities. The second, the damper placement problem, is a novel location
problem in which truss members of a flexible space structure are chosen so as to maximize the
dampening effect on vibrational modes of interest.

2 Background Information

Tabu search is a high-level heuristic search strategy that attempts to effectively explore the search
space of a discrete optimization problem by successively restraining (tabu moves) and freeing (as-
piration criteria) of a local search ([2],[1]). Both discrete location problems studied here include
a data matrix, D, which catalogs the effect of potential locations (column indices of D) on the
customers (row indices of D) that are served by these locations. For the k-median problem, D is a
shortest path distance matrix while for the damper placement problem, D is a modal strain energy
matrix.

One of the earliest applications of tabu search, TS, that incorporates a long-term memory
function, is found in [3] for the quadratic assignment problem. In [3], a constructive procedure uses
D to generate an initial feasible solution. After a fixed number of iterations, TS is restarted using
the same constructive procedure but with an altered D matrix. The distances in D increase for
entries that were exchanged during the search. The long-term memory function implemented in
the TS procedure for the k-median problem is quite similar to this approach.

Recently, several researchers, [6], [7], and [8], have successfully implemented tabu search heuris-
tics coupled with a reinforcement learning mechanism to restart the search instead of a long-term
memory function. There are a number of ways in which reinforcement learning attempts to guide a

1

search. Most incorporate a reward function when a location is added and a penalty function when
a location is deleted from the current solution.

3 Descripton of Test cases

The first set of test cases address the k-median problem. The seminal work in modern location
theory is generally attributed to Hakimi [4],[5]. Hakimi formulated the general problem of locat-
ing one or more facilities to minimize the sum of the distances (k-median) between facilities and
customers on the network. The k-median problem is NP-hard and, as a result, solution strategies
focus on heuristic procedures. One difficulty in comparing the performace of heuristics is having
a standard set of test problems. The OR-library ([10], [11]) provides 40 k-median test cases of
varying sizes. We have chosen 4 problems from this libary that have proven difficult for other
heuristics procedures to solve (i.e. determine the optimal solution [12]) as a way to benchmark the
performance of our TS and reninforcement learning procedures.

Table 1: k-median OR-library test problems.

Problem n k Opt Value

14 300 60 2968
15 300 100 1729
19 400 90 2845
34 700 140 3013

Two flexible space structures provide the data for damper placement problem test cases. Prior
to the development of the International Space Station launched in 1998, the increasing demand
for larger-sized space structures with lower mass led to the development of highly flexible truss
structures where, in effect, every point can move relative to the next. The first test article was de-
veloped at NASA Langley during Phase I of the Control–Structures Interaction (CSI) Evolutionary
Model (Figure 1). The second test article was developed for NASA at the MIT Space Engineer-
ing Research Center (Figure 1). Let m denote the number of modes and n denote the number of
truss members in the structure. A normal modes analysis of a finite element model of these two
structures yield modal strain energy matrices with dimensions of 10 by 1507 for the CSI truss and
34 by 222 for the MIT truss. The entries in the matrix have been normalized so that each entry
denotes the percentage of the total modal strain energy imparted in mode i to truss member j. Let
D denote the strain energy matrix.

The goal is to select k truss members to be replaced by active dampers so that the modal
damping ratio is maximized for all significant modes and is referenced as the Damper Placement
Problem (DPP). Maximizing the modal damping ratio is a widely accepted goal in DPPs (see
[9]). Both active and passive dampers dissipate forces that are internal to the structure and are
most effective when replacing truss members with maximum extension or compression. The truss
elements with maximum internal displacement are those with the largest strain energy over all
modes. Following [13], a force-feedback control law (see also [14]) is used, yielding damping ratios
that are directly proportional to the fraction of modal strain energy. Hence, the maximization of
the modal damping ratio for all modes can be accomplished by selecting the k damper locations

2

Figure 1: Flexible Space Structures: MIT and CSI

that maximize the minimum sum of modal strain energy over the k chosen locations. That is, given
D the goal is to find the m by k submatrix whose smallest row sum is as large as possible.

4 Tabu Search with Reinforcement Learning

A high-level description of how a reinforcement learning procedure can be used instead of a more
traditional long-term memory approach for TS is described. Inspired by the algorithm presented
in [7] for an airline gate assignment problem, a probability learning procedure is implemented that
rewards selected locations (columns of D) based on each location’s contribution to solution quality,
with the goal of escaping local optimum.

A probability vector P⃗ of size n × 1, where n is the number of columns of the data matrix
D, records the rewards and penalties. Each entry pi of P⃗ denotes the selection probability of the
associated location i. Initially, all pi in P are set to 1

n for a fair start and are updated during the
search.

TS proceeds by repeating a predetermined number of iterations (designate this parameter by
max it) of a local search in which all possible swaps between the k columns in the solution and
the n − k columns not in the current solution are examined. In each of the max it iterations the
best swap (which may be the best nonimproving swap) that is not tabu, or is tabu but meets the
aspiration criterion is selected. The tabu status of the selected swap is updated, as well as the
probability vector P⃗ . Each collection of max it iterations is called a round.

The initial solution for TS is generated by random selection or by a greedy add heuristic [15].
After the completion of each round (see Algorithm 1 below), a new starting solution is determined
by making use of the probablity vector P⃗ before the next round of search iterations begins. During
the search, an incumbent solution (the best solution found over all rounds), and temporal optima
(the best solutions for each round) are recorded.

A matrix T of size n × n, records the tabu status of each swap. Initially, each tij entry is set
to 0. At the conclusion of each iteration, the tabu status tij and tji of the best swap are updated
by adding the sum of the predetermined tabu tenure to the current iteration number. As a result,
in subsequent iterations, exchanging columns i and j (or j and i) is deemed tabu if the current
iteration number is less than ti,j (or tj,i).

3

Algorithm 1 A Round of Tabu Search

Input: data matrix D(n,n); M selected columns of D; NotM nonselected columns; tabu tenure t
Output: Updated selected set M , nonselected set NotM

1 while iteration < max it do

2 Set Ti,j = 0 for all i, j ∈ T, Set pi = 1/n for all i ∈ P⃗ .
3 for all Mi ∈ M do
4 for all ∈ NotMj do
5 let Mi = NotMj , NotMj = Mi

6 compute objective value for M, let S(i,j) = new obj value

7 let Mi = NotMj , NotMj = Mi

8 end

9 end
10 while best swap is None do
11 let (i, j) be argmax(S) or argmin(S)
12 if T(Mi,NotMj) >= iteration then

13 if S(i,j) is better the current best objective value then

14 Best Swap ← (i, j), incumbent solution = S(i,j)

15 end
16 else
17 S(i,j) = 0 or ∞
18 end

19 end
20 Best Swap ← (i, j)

21 end
22 Set Mi = NotMj , NotMj = Mi; T(Mi,NotMj), T(NotMj ,Mi) = iteration + t

23 if S(i,j) >temporal optimum then

24 temporal optimum=S(i,j)

25 end

26 end
27 return M ,
28 return M , NotM

5 K-Median Computational Experiments

The k-median computational experiments were conducted with three models; one that uses stan-
dard TS; one that uses LTM for its restartsl; and one that uses reinforcement learning for its
restarts. These two models were coded with Python and run on four datasets from the OR li-
brary [11], each with a known optimal solution. Knowledge of the optimal solutions allowed us
to compare the efficiency and correctness of the models. Each test run used the same or similar
TS search parameters to allow adequate comparison. If the baseline model (no LTM) found the
optimal solution to the data set, then the second model (w/ LTM) was not run. The findings are
summarized in the table below.

4

Problem n p Opt Value No LTM w/ LTM w/ RL

14 300 60 2968 2968 n/a n/a
15 300 100 1729 1736 1732 1729
19 400 80 2845 2848 2848 2846
34 700 140 3013 3022 3016 3018

5.1 Model 1: Baseline Tabu Search with no LTM

The baseline version of TS did not utilize any kind of long-term memory component, relying only
on the local search procedure outlined in [2] and [1], which includes a tabu tenure of 60 as well
as aspirational moves. All starting solutions were generated with a simple greedy-add algorithm
[15]. Each search consisted of 200 to 350 iterations. These parameters were determined during the
exploratory phase of this research and were not rigorously tested for optimality. Graphs for each
data set were generated to visualize the algorithm’s progress. The baseline model found the optimal
solution for only one of the four data sets, which indicates that LTM has the potential to improve
these initial results. The successful search results for data set 14 without an LTM component are
given in Figure 2.

Figure 2: Baseline Tabu Search Visualization

5.2 Model 2: Adjusted Distance Matrix for LTM Restarts

The LTM procedure makes use of the previous round’s search history by adjusting the value of
the entries in a copy of D, the shortest path distance matrix. Let DLTM = D and let dmax be
the maximum entry in DLTM . A fraction, µ of dmax is added, entry-wise, to the matrix DLTM .

5

After some experimentation, the parameter µ was assigned the value 0.03. Each column j of DLTM

corresponding to a location in the best solution found in the previous round is altered by adding
µ ∗ dmax to dLTM (i, j) for all rows i. This method encourages the model to restart with lesser-used
locations, as shortest path distances associated with locations found in the best local solution are
penalized in the distance matrixDLTM . (Note thatDLTM is used only in the greedy-add procedure,
the original D is used in the improvement phase of TS.) For this model, the number of iterations
for each run was 350 to allow time for the run to decrease the likely higher objective value of its
restart solution.

This restart method was successful in finding a better solution than the baseline model for two
of the data sets, 15 and 34. For the remaining data set, 19, this model did not find a better solution
than the baseline model. In fact, only in the first run did the model find a solution as good as the
baseline model. The inefficiency of subsequent runs for this data set indicates that after a certain
point, the µ ∗ dmax value lead the search into non-improving areas of the solution space. In the
future, it could be beneficial to decrease this parameter for locations that have not been a part of
the solution for several runs. This smoothing could reduce the chance that a location that belongs
to the optimal solution is perpetually excluded from the restart solutions.

Figure 3: Visualization of Tabu Search with LTM Restarts

5.3 Model 3: Reinforcement Learning with Reward and Penalty Matrix

The third version of the model uses reinforcement learning techniques to gather information for
restarting a new round of TS. Taking inspiration from [7], each row i of the probability vector is
initialized with pj = 1/n for all j, where n is the number of potential locations. When a location i
remains selected in the best solution at the end of iteration t, pj is rewarded as follows:

6

pj(t+ 1) =

{
α+ (1− α)pj(t) if j = l

(1− α)pj(t) otherwise

where α (0 < α < 1) is a reward factor. If location l is swapped for location m, location l’s
probability vector entry is penalized as follows:

pj(t+ 1) =


(1− γ)(1− β)pj(t) if j = l

γ + (1− γ) 1
k−1β + (1− γ)(1− β)pj(t) if j = m

(1− γ) 1
k−1β + (1− γ)(1− β)pj(t) otherwise

where β (0 < β < 1) is a penalization factor and γ (0 < γ < 1) is a compensation factor. After
each update, the probability vector is normalized to ensure that it sums to 1. A smoothing factor
ρ is used if any probability value gets too large. In the computational experiments smoothing is
done whenever a probability threshold of 0.3 is reached. When restarting, the locations with the k
largest probabilities are selected (intensification), and the remaining n− k locations are chosen at
random (diversification). k is set to n/2, half of the number of potential locations in the data set.

This approach was moderately successful, finding the optimal solution for data set 15 and
getting closer to the optimal value for data set 19 than the other two models. However, this model
only matched, not improved, the best value found by the second model. As such, our reinforcement
learning model shows promise but may need further fine-tuning of its parameters.

Figure 4: Visualization of Tabu Search with Reinforcement Learning

7

6 DPP Computational Experiments

In this section, the performance of the LTM-Restarted Tabu Search(LTM) and Probability Learning-
Restarted Tabu Search(PLT) are examined through computational experiments. The search space
(problem size) of the DPP grows exponentially as the number of location chosen (k) increases.
After considering computation time, the search parameters are doubled each time k is doubled.
For example, (25, 25, 10) which denotes 25 rounds of tabu search with 25 as the maximum number
of iterations, and a tabu tenure of 10 iterations for k = 8, would be doubled to (50, 50, 20) when
k = 16. To compare the performance of the heuristics, experiments are carried out such that the
basic search parameters and random seeds are fixed for each value of k tested. By running numer-
ous repetitions of plain Tabu Search (TS), 4 sets of search parameters were identified, that is, 4
different combinations of maximum round, maximum iteration, and tabu tenure length.

For PLT, two different methods for updating the probability vector are proposed, see Algorithm
2. If Dual Update is set to false, a pre-determined value α is used to update the probability vector
when an improving solution is found; if it is set to true, and a new global optimum is found, another
pre-determined value β is introduced to update the probability vector. The probability vector will
reset when each iteration is complete.

For LTM, a parameter µ is used to adjust the data matrix. Depending on whether the search is
in an intensify (diversify) phase, multiply f⃗ , the recorded frequency vector by µ, and add (subtract)
the product to each row of the temporal data matrix. This temporal matrix is then presented to a
Greedy Add heuristic to generate a new starting solution; see Algorithm 3.

In the experiments, the four sets of basic search parameters, three random seeds, and two choices
of the special search parameter are cross-computed, resulting in 24 unique trials for LTM and PLT.
For the plain tabu search(TS), the size of the basic search parameters are doubled to make up for
the special search parameters to make an even number of 24 trials. The initial solutions for TS
and PLT are randomly generated, while the initial solution for LTM is obtained using the greedy
add heuristic.

After extensive exploration with different values, the following parameter values were selected:
µ = 0.0003 and µ = 0.0005 as special search parameters for LTM. Both the average objective values
of all 24 trials, as well as the best objective achieved are recorded. The number in parentheses is
the number of times the observed best solution was found in the 24 trials. The results are shown
in Table 1.

k Tabu Mean Tabu Best PLT Mean PLT Best LTM Mean LTM Best

8 .014208 .014371(1) .014247 .014371(4) .014064 .014291(11)
16 .029554 .029646(3) .029565 .029718(1) .029582 .029647(18)
32 .057719 .057943(2) .057814 .057943(8) .057718 .057943(1)

Table 1: Performance Metrics for csi Data

k Tabu Mean Tabu Best PLT Mean PLT Best LTM Mean LTM Best

10 23.043 23.13207(1) 23.091 23.34815(3) 22.890 23.13207(2)
20 46.708 46.98334 (1) 46.869 47.06370(1) 46.535 46.76752(2)

Table 2: Performance Metrics for mit truss Data

8

Algorithm 2 Probability Vector Update

Input: Probability Vector P⃗ , two reward/penalty parameters α and β
Output: Updated ProbDability Vector P⃗

29 if S(i,j) > temporal optimum then

30 if Dual Probability Update and S(i,j) is better the current best objective value then

31 Set pi = pi × (1− β) for all i ̸= Mi

32 Set pi = pi × (1− β) + β for i = Mi

33 end
34 else
35 Set pi = pi + α for i = Mi

36 Set pi = pi − α for i = NotMj

37 end

38 end

39 return P⃗

Algorithm 3 Greedy Add using LTM

Input: Frequency vector f⃗ , data matrix D, ratio µ, column index set N, row index set M
Output: X ⊆ N (set of k columns of D)

40 if Intensify/Diversify then

41 D′
i = Di,: ± (f⃗ × µ), ∀ rows i

42 Greedy Add Heuristic
43 X← {}
44 while |X| < k do
45 for j ∈ N −X do
46 for i ∈M do
47 rowsum(i) = D′

i,j +
∑

l∈X D′
i,l

48 end
49 rowsumMax(j) = maxi∈M rowsum(i)

50 end
51 j∗ = argminj∈N−XrowsumMax(j)
52 X = X + j∗

53 end

54 end
55 return X

9

References

[1] Glover, F., “Tabu Search: A Tutorial,” INTERFACES, 20 (1990) 74-94.

[2] Glover, F., “Tabu Search–Part I,” ORSA J. on Computing, 1 (1989) pp. 190-206.

[3] Skorin-Kapov, J., “Tabu Search Applied to the Quadratic Assignment Problem,” ORSA J. on
Computing, 2 (1990) pp. 33-42.

[4] Hakimi, S.L., “Optimal Locations of Switching Centers and the Absolute Centers and Medians
of a Graph,” Operations Research, 12, 450-459 (1964).

[5] Hakimi, S.L., “Optimum Distribution of Switching Centers in a Communication Network and
Some Related Graph Theoretic Problems,” Operations Research, 13, 462-475 (1965).

[6] Li, L., Z. Wei, J. Hao, and K. He, “Probability Learning Based Tabu Search for the Budgeted
Maximum Coverage Problem,” Expert Systems with Appications, Vol. 183, November (2021)
article 115310.

[7] Li, M., J. Hao, and Q. Wu, “Learning-driven Feasible and Infeasible Tabu Search for Airport
Gate Assignment,” European Journal of Operational Research, Vol. 302, Issue 1, October (2022)
pp. 172-186.

[8] Sun, Z., U. Benlic, M. Li, and Q. Wu, “Reinforcement Learning Based Tabu Search for the
Minimum Load Coloring Problem,” Computers and Operations Research, Vol. 143 (2022) article
105745.

[9] Anderson, E., M. Trubert, J. Fanson, “Testing and Application of a Viscous Passive Damper
for Use in Precision Truss Structures,” Proceedings of 32nd Structures, Structural Dynamics
and Materials Conference, Baltimore, MD., April (1991) pp. 2795-2807.

[10] Beasley, J.E., “A note on solving large p-median problems,” European Journal of Operational
Research, Vol. 21 (1985) pp. 270-273.

[11] Beasley, J.E., ”OR-Library: distributing test problems by electronic mail”, Journal of the
Operational Research Society, Vol. 41(11) (1990) pp. 1069-1072. (last updated 2018) Available
for download at https://people.brunel.ac.uk/ mastjjb/jeb/info.html

[12] Chiyoshi, F., and R.D. Galvao, “A Statistical Analysis of Simulated Annealing Applied to the
p-Median Problem,” Annals of Operations Research, Vol. 96, (2000) pp. 61-74.

[13] Padula, S., and C.A. Sandridge, “Passive/Active Strut Placement by Integer Programming,”
Topology Design of Structures, Martin P. Bledsoe and Carlos A. Mota Soares, eds., Kluwer
Academic Publisher (1993) pp. 145-156.

[14] Preumont, A., “Active Damping by a Local Force Feedback with Piezoelectric Actuators,” Pro-
ceedings of 32nd Structures, Structural Dynamics and Materials Conference, Baltimore, MD.,
April, 1991, 1879-1887.

[15] Daskin, M., Network and Discrete Location: Models, Algorithms, and Applications, John Wiley
& Sons, 2013. ISBN: 978-0-470-90536-4

10

