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ABSTRACT 
 
The rapid progression of Artificial Intelligence (AI) is redefining human-machine interactions, moving beyond 
systems as human-controlled tools toward human-AI teaming, where humans and AI collaborate as near-peer partners 
to achieve superior outcomes. Traditional human-machine collaboration has relied on machines as subordinate aids, 
but AI’s increasing autonomy demands a new paradigm for cooperative performance, especially in complex 
operational settings. This paper argues for the integration of human-AI teaming concepts into modeling and simulation 
(M&S) frameworks supporting the Live, Virtual, Constructive (LVC) paradigm, a cornerstone of Department of 
Defense (DoD) training, evaluation, and mission rehearsal. As the DoD and industries prioritize AI adoption, current 
M&S approaches and LVC constructs lack the fidelity to represent human-AI team dynamics, risking unpreparedness 
for real-world applications. Incorporating these concepts is essential to enhance training, optimize system design, and 
ensure that simulation interoperability standards evolve to meet this emerging need. We propose leveraging LVC 
environments to explore human-AI teaming through hybrid simulations—combining live human-AI interactions, 
virtual scenarios, and constructive models—while assessing the adaptability of standards like HLA and DIS. 
Integrating human-AI teaming into M&S for LVC is expected to bridge critical gaps, enabling more effective 
preparation for AI-enhanced operations and offering a roadmap for advancing simulation capabilities. 
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INTRODUCTION 
 
The increasing adoption of Artificial Intelligence (AI) has led to a shift from traditional human-machine collaboration 
to human-AI teaming, where humans and AI systems collaborate as near peers to achieve shared goals. However, it 
is essential to recognize the distinction between human-machine teams, human-AI teams, and the AI-enhanced 
environments in which they may operate. The increasing adoption of Artificial Intelligence (AI) is significantly 
evolving the nature of human-machine interactions. While human-machine collaboration has historically involved 
humans interacting with machines as tools, recent advances in AI has facilitated the evolution towards human-AI 
teaming. In this paradigm, humans and AI systems collaborate as near-peers, leveraging their respective strengths and 
partnering to achieve shared objectives. It is crucial to acknowledge that human-AI teaming represents a specific form 
of human-AI collaboration, distinguished by the higher degree of autonomy and shared responsibility exhibited by AI 
systems within the team. 

 
Humans and machines may function within contexts significantly shaped by AI, such as simulations with AI-
controlled entities, AI-driven decision support systems, or real-world settings with integrated AI systems (e.g., 
autonomous vehicles, smart cities). In this paper we focus on that intersection where humans and AI rely on each other 
to fulfill their roles and complete tasks toward collective goals. Although humans may team with various machines of 
varying sophistication or capability, we are interested in AI systems that understand context, make decisions, and learn 
from experiences, and so we distinguish them from the more basic automated systems or machines that operate without 
these cognitive functions.  Figure 1 illustrates the relationship between different types of human-machine interactions, 
particularly focusing on the role of AI. The diagram depicts three key dimensions that define the spectrum of human-
AI collaboration: 

1) Level of Autonomy: This dimension represents the degree of independence the machine 
possesses in performing tasks. 

2) Machine Uses a Cognitive Approach: This dimension signifies whether the machine employs 
cognitive processes, such as learning, decision-making, and problem-solving, in its operations. 

3) Human-Machine Interaction Types: This dimension encompasses: 
 HMI (Human-Machine Integration): Basic interactions where humans utilize machines 

as tools. 
 HAI (Human-AI Integration): Interactions involving AI technologies, where the AI 

primarily assists human tasks. 
 HMT (Human-Machine Teaming): Collaborative interactions where humans and 

machines work together as a coordinated team, but the machine's role remains primarily 
supportive. 

 HAT (Human-AI Teaming): The highest level of collaboration, characterized by near-
peer relationships between humans and AI systems, involving shared decision-making 
and responsibility. 

 

 

 
 

HMI = Human Machine Integration 
HAI = Human AI Integration 
HMT = Human Machine Teaming 
HAT = Human AI Teaming 

 
Figure 1. The intersectionality of human-AI teaming 
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Complicating this is the fact that these distinctions are not always clear-cut, and there can be overlap between these 
different types of human-AI interaction. For example, the specific characteristics of each type of interaction will vary 
depending on the use-case, the specific AI technologies involved, and the desired level of human involvement. Our 
primary focus lies on the HAT-type collaboration, particularly its implications within what we might call AI-enabled 
Live, Virtual, Constructive (LVC) environments. It is important to understand that while interaction is a necessary 
component of teaming, not all interactions constitute teaming. When teaming, humans and AI systems function as true 
partners, sharing goals, responsibilities, and decision-making authority (O'Neill, Flathmann, McNeese, & Salas, 
2023). AI systems that serve as true collaborators have agency and the ability to learn and adapt. As such, activities, 
such as LVC training events, that expect human-AI teaming must emphasize interdependency, mutual trust, and shared 
understanding. In this context, human-AI teaming is a richly collaborative relationship between humans and AI 
systems, where both entities work together to achieve a common goal. To distinguish HAT from other forms of human-
AI collaboration, we must consider:  
 

 Level of AI Autonomy: Human-AI teaming involves higher levels of AI autonomy and shared responsibility 
compared to human-autonomy interaction. 

 Focus of Collaboration: Human-AI teaming emphasizes true collaboration and partnership, while human-
autonomy interaction and machine-machine teaming with human oversight prioritize human control and 
system reliability. 

 Decision Making Authority: In human-AI teaming, decision-making authority is often shared between 
humans and AI, whereas in other models, humans retain primary control. 

 Complexity: Human-AI teaming in both training and operational environments presents unique challenges 
due to the increased sophistication of the AI entities, the interactions between human and AI decision making 
elements, and the need for robust trust and collaboration.    

 
Effective human-AI teaming in AI-enhanced environments requires a deep understanding of human cognition, 
behavior, and social dynamics, as well as the capabilities and limitations of AI systems and their impact on the 
surrounding environment (National Academies of Sciences, Engineering, and Medicine, 2021). Prior research in 
teaming performance suggests, "For an AI system to be a part of a team, it must be capable of interdependence in its 
operations, as well as a degree of autonomy in its execution" (National Academies of Sciences, Engineering, and 
Medicine, 2021) (Reyes, Dinh, & Salas, 2019) (Salas, Cooke, & Rosen, 2008).  Achieving this level of collaboration 
and autonomy demands a nuanced understanding of how humans and AI systems can work together effectively within 
these dynamic and increasingly complex environments.  
 
Human-AI Teaming and LVC 
 
Human-AI interaction in AI-enhanced environments requires a structure framework to guide the design, development, 
testing, and evaluation of effective collaboration. Unlike human-controlled tools, AI systems designed to cooperate 
with humans achieve greater capabilities through partnership. These systems vary in adaptability and learning 
potential, requiring intentional design to ensure effective teaming. 
 
Evaluating human-AI teaming is complex and often infeasible, presenting challenges in designing systems that operate 
safely as intended. Deliberate exploration of various teaming forms is crucial as the U.S. DoD seeks to develop new 
human-AI capabilities. Effective training and evaluation are essential for these systems to function safely in 
operational environments. Currently, there is a capability gap in designing human-AI teams and using training to drive 
innovative system design and refinement. 
 
The DoD’s LVC paradigm, known for training, evaluation, and mission rehearsal, can address these challenges but 
hasn’t been fully adapted for human-AI teaming. Standards for LVC environments are crucial to ensure seamless 
interaction among live, virtual, constructive, and AI-enhanced systems. These standards enable consistent evaluation 
metrics, validating the performance and safety of these systems. 
 
LVC AND THE CHALLENGES OF HUMAN-AI TEAMING 
 
The Department of Defense (DoD) has established standards for Live, Virtual, and Constructive (LVC) training 
environments to ensure interoperability, reusability, and effectiveness (Allen, Lutz, & Richbourg, 2010). The DoD's 
LVC standards are primarily guided by the High-Level Architecture (HLA) and the Distributed Interactive Simulation 
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(DIS) protocols. HLA is a standard for distributed simulation, which enables different simulations to interoperate and 
exchange data in a standardized way. The DoD has also established the Test and Training Enabling Architecture 
(TENA) as a common architecture for LVC environments. TENA provides a standardized framework for integrating 
live, virtual, and constructive elements, enabling more effective and efficient training. Additionally, the DoD's 
Modeling and Simulation (M&S) community has developed the M&S Master Plan, which outlines the vision, goals, 
and objectives for M&S in the DoD, including LVC standards. The LVC standards also emphasize the importance of 
data interoperability, security, and accreditation to ensure that LVC environments can be used effectively and securely 
across different domains and classifications and has most recently been updated to include consideration of AI as 
stated in DoD Manual 5000.101,  
 

“Live, virtual, constructive (LVC) technology to support and augment human-machine teaming, 
interoperability, and live testing of AI-enabled and autonomous DoD systems; enable replication of 
specific test scenarios; and reduce the risk of bridging the AI model testing with system integration” 
(Office of the Director of Operational Test and Evaluation, 2024). 
 

The LVC construct, which categorizes the way humans interact with simulations, first originated in 1991. Inspired by 
the Army’s challenge to increase the effectiveness of training methods to meet the challenges posed by full spectrum 
warfare, GEN Paul F. Gorman presented a paper to the Society for Computer Simulation that argued “…most military 
training could be advantaged by Tactical Engagement Simulation (TES) in any or all of its three forms, Constructive, 
Virtual and Subsistent, and that, ideally, all three forms would be used interactively” (Gorman P. , 1991). As 
documented in his Interservice/Industry Training, Simulation and Education Conference (I/ITSEC) Fellow’s paper, 
the terms in the 1991 paper morphed over time: “subsistent” became “live” and Seamless TES became “blended 
training” (Gorman P. F., 2011). Later, the Defense Science Board (DSB) Task Force on Simulation Readiness & 
Prototyping, on which GEN Gorman was a member, solidified the concept of LVC, by asserting “Everything is 
simulation except combat” and classified the whole of Modeling, Simulation and Gaming as Live, Constructive, and 
Virtual. 
 
A commonly used figure capturing the LVC taxonomy emerged in 2013, as shown in Figure 2 (Interservice/Industry 
Training, 2013). “Live” refers to Modeling & Simulation (M&S) involving real people operating real systems (e.g., a 
pilot flying a jet) for a simulated mission. “Virtual” refers to real people operating simulated systems (e.g., a pilot in 
a flight simulator). “Constructive” refers to simulations that involve simulated people operating simulated systems 
(e.g., a simulated pilot flying a simulated jet). According to the 
matrix, there is no name for simulated people operating real 
equipment. 
 
LVC and AI 
 
When the LVC taxonomy was created in 1991, there was no agreed 
name for the upper right quadrant that suggests simulated people 
operating real equipment, as there were no examples of this type 
of interaction. However, technology has advanced to the point 
where simulated humans in the form of modern AI are operating 
real systems. For example, the DARPA AlphaDogfight Trial was 
a competition where AI controlled a simulated F-16 fighter jet in 
aerial combat against an Air Force pilot flying in a virtual reality 
simulator (Goecks, et al., 2023). The AI-based system defeated an 
experienced pilot in a simulated dogfight, demonstrating that an 
AI-based pilot may surpass human abilities. Although this 
quadrant remains officially unnamed, it is sometimes called 
Autonomy. 
 
THE CASE FOR EVOLVING THE LVC CONSTRUCT 
 
The military community is traditionally and understandably risk-
averse; we must be intelligent about how to design, operate, and 
train for the new hybrid of human-AI teams. In theater, teams will consist of humans and AI systems with 

Figure 2. Categorizing simulations by the way 
humans interact with them [9] 
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heterogeneous capabilities and specialization. Teams will include human-human, human-AI, and AI-AI dynamics 
with each being bidirectional. Operations require a capability-oriented form of teaming where hybrid teams make 
decisions and act on them to produce a synergistic if not unified capability with real-world consequences. All levels 
of sensing, communicating and coordinating, computing, deciding and executing will need to be explored, and all may 
take place in the face of uncertainty and severe time constraints as well as being distributed to varying degrees 
depending on the operation. This introduces a complex and intractable problem space, one for which we believe LVC 
may offer the best framework for meaningful and comparative study leading to better, intentional design, and well-
founded training. 
 
A Proposal for Extending the LVC Paradigm 
 
To incorporate the new dimension of AI into the live, virtual, constructive (LVC) paradigm, Loper and Sitterle (Loper 
& Sitterle, 2023) propose an expanded model that goes beyond the Autonomy quadrant in Figure 2, leading to the 
revised framework depicted in Figure 3. Specifically, Loper and Sitterle propose treating AI-enabled systems as a 
distinct "Actor" within the simulation framework. This categorization separates AI systems from real people and 
traditional M&S components, which include simulated platform interfaces (used to create a sense of realism in virtual 
environments) and fully abstracted representations of dynamics (constructive). 
 

 
Figure 3. The revised LVC model of Loper and Sitterle [11] 

The revised LVC construct aims to define effective human-AI teaming. As shown in Figure 4, we use binary notation 
to indicate if an LVC entity is real, simulated, or not present, excluding “simulated” AI because lower-fidelity AI can’t 
accurately represent true performance. 

Figure 4. The extended LVC model for human-AI teaming [11] 
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Since AI is software based, using the actual AI software is more practical than modeling a lower-fidelity version. 
Unlike simulated data used for training, fully implemented AI systems can be trained on such data before integration 
into the LVC model. The extended LVC framework includes adaptive, learning-enabled AI, while narrow AI and non-
learning systems fit within the traditional LVC model. Reflecting AI’s presence or absence, the model avoids 
distinctions between “real” and “not real” AI since such distinctions are unsupported by established literature. 
 
THE FUTURE OF HUMAN SYSTEMS INTEGRATION IN HUMAN-AI TEAMING 
 
Human Systems Integration (HSI) is defined by the Department of Defense (DoD) in DoD Instruction 5000.95 as “the 
System Engineering process and program management effort that provides integrated and comprehensive analysis, 
design, and assessment of requirements, concepts, and resources for human factors engineering, manpower, personnel, 
training, safety and occupational health, force protection and survivability, and habitability (the ‘domains’ of HSI)” 
(Office of the Under Secretary of Defense for Research and Engineering, 2022). With the release of DoDI 5000.95 on 
1 April 2022, the Office of the Under Secretary of Defense for Research and Engineering (OUSD(R&E)) emphasized 
the importance of integrating human considerations across system design to optimize performance and minimize life-
cycle costs (Office of the Under Secretary of Defense for Research and Engineering, 2022). Similarly, the International 
Council on Systems Engineering (INCOSE) defines HSI as “an approach that integrates technology, organizations, 
and people effectively” (International Council on Systems Engineering, 2023). 
 
While HSI has historically focused on systems engineering and traditional human factors, the rise of AI-enabled 
systems and their integration within LVC environments demands an expanded perspective. Increasing system 
complexity, coupled with the shift toward AI-driven capabilities, presents new challenges and opportunities for HSI 
practitioners (Reqi Systems Engineering Articles, 2024). As modern systems operate within intricate networks 
involving humans, machines, and AI agents, the boundaries between human and machine functions are increasingly 
blurred. In LVC operations, this interconnectedness is exemplified by the need for seamless system-of-systems 
integration, where humans and AI collaborate dynamically across time zones and locations to perform complex tasks. 
 
HSI and AI-Enabled Systems in LVC Environments 
 
The DoD HSI Guidebook (Office of the Under Secretary of Defense for Research and Engineering, 2022), while not 
a formal standard, provides best practices for addressing HSI challenges in system design. However, AI-enabled 
systems introduce unique considerations, particularly in the context of human-AI teaming. The guidebook implicitly 
acknowledges the importance of adapting HSI practices to address collaboration between humans and AI, emphasizing 
the need to mitigate risks such as cognitive overload and safety hazards in operations involving complex, time-
sensitive decision-making. For example, system capability documents should clearly define “human-in-the-loop” 
requirements, specifying scenarios for “human in control,” “manual override,” or “fully autonomous operations”. LVC 
environments provide an essential testing ground for exploring these dynamics.  
 
By simulating real-world scenarios, LVC platforms enable system designers to evaluate how human-AI teams interact, 
identify potential failure points, and refine system requirements. Incorporating HSI principles into these environments 
ensures that AI systems are designed to complement human capabilities, fostering trust, adaptability, and shared 
situational awareness. This is particularly important as AI agents become increasingly autonomous, requiring clear 
interaction protocols and transparent decision-making processes to build confidence among human operators. 
 
To address the evolving landscape of AI-enabled systems, the HSI framework must expand to include consistent 
representations of systems where humans and AI are treated as collaborating agents (Boy, 2024). Emerging research 
suggests that multi-agent system models developed in AI are closely aligned with the system-of-systems approaches 
used in systems engineering. In this context, an “agent” can be viewed as an entity capable of perceiving situations, 
deciding, and executing actions—whether human or AI-enabled. This cross-disciplinary alignment offers 
opportunities for “cross-fertilization” between AI and systems engineering, enabling the development of robust multi-
agent representations tailored to human-AI teaming. 
 
The increasing interconnectivity and complexity of these systems demand that HSI practitioners account for not only 
human factors but also the interplay between AI agents and human users. Agent-oriented system modeling provides a 
valuable tool for understanding these relationships, allowing for the development of adaptive, resilient systems that 
can dynamically allocate tasks based on real-time conditions. 



 
 
 

MODSIM World 2025 

2025 Paper No. 36 Page 8 of 12 

HSI Standards and Best Practices for LVC and AI Integration 
 
Standards and best practices are critical for ensuring the successful integration of HSI principles into AI-enabled LVC 
environments. SAE Standard SAE6906A, “Standard Practice for Human Systems Integration,” offers a valuable 
starting point for addressing HSI challenges in AI-enabled systems (G-45 Human Systems Integration, 2023) . This 
standard outlines HSI processes throughout the system life cycle, from design and development to decommissioning, 
and emphasizes the importance of addressing HSI considerations proactively in procurement and acquisition 
programs. 
 
While originally developed for the automotive industry, SAE6906A provides a framework that can be adapted to 
military applications, particularly in the context of LVC operations. By incorporating lessons learned from the 
automotive sector’s advancements in AI-enabled human-machine interfaces, the DoD can develop tailored standards 
that address the unique demands of military systems. These standards should account for the dynamic nature of human-
AI teaming, emphasizing scalability, interoperability, and human-centered design. 
 
AN EXAMPLE USE CASE FOR HUMAN-AI TEAMING IN LVC 
 
To showcase the value of LVC training with both human and AI participants, consider the following mission rehearsal. 
This LVC event evaluates the integration and performance of a Human-AI team in a dynamic scenario, testing 
Intelligence, Surveillance, and Reconnaissance (ISR) and Search and Rescue (SAR) operations. The focus is on 
assessing Human-AI collaboration, particularly in handling uncertainty and adapting to changing missions. Human 
analysts and intelligent UAVs work as a team, exchanging information and opinions to enhance situational awareness 
and operational efficiency, thereby improving their response to mission-critical tasks in a realistic training 
environment. 
 
Use Case Narrative 
 
The mission begins with a directive to locate a high-value target. A swarm of intelligent AI-enabled UAVs 
autonomously deploy to gather intelligence, processing data at the edge. This processed intelligence is shared with 
human analysts, who request further details from the UAVs. The UAVs adapt to evolving mission objectives, 
responding to analyst requests and seeking human interpretation of collected intelligence (e.g., images, audio). 
Analysts, working individually and collaboratively, use the information to generate and evaluate hypotheses about the 
target’s location, directing UAVs to address information gaps. 

When an unexpected helicopter crash occurs, the UAV swarm splits: one sub-swarm continues ISR activities, and the 
other focuses on search and rescue at the crash site. Human analysts also split, with one group focusing on the high-
value target and the other on the crash site. In the search and rescue effort, analysts interpret crash site intelligence, 
identify critical gaps, and task the UAV sub-swarm. UAVs provide processed data and request human interpretation. 
This iterative exchange highlights the dynamic human-AI teaming, balancing competing mission priorities for an 
effective response. 

The team includes expert human analysts and UAVs. Human analysts specialize in ISR missions, hypothesis 
generation, and identifying critical information for accurate evaluations. UAVs, equipped with advanced capabilities 
like route planning, image capture, pattern recognition, and on-edge processing, use AI-driven analysis to recognize 
features such as caves, debris, and signs of human life, prioritizing anomalies for human review. 

The scenario unfolds as follows: 

1) Mission Initiation: The team receives a commander's intent to locate a terrorist leader.  
2) Analysis Setup: Human intelligence analysts generate hypotheses about the target’s location in the simulated 

environment. 
3) Swarm Deployment and Intelligence Gathering: UAVs are deployed, using search and navigation 

algorithms to capture and analyze data (images, audio, signals) on-board and transmit relevant information. 
4) Pattern Recognition: A UAV detects possible clothing at a cave entrance and requests verification from an 

analyst. If confirmed, the UAV continues searching the area; if not, the swarm moves to the next location. 
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5) Hypothesis Evaluation: Analysts generate and evaluate hypotheses, guiding UAVs based on received 
intelligence. They look for evidence to support or disconfirm hypotheses and direct UAVs accordingly. 

6) Human-AI Coordination: An analyst confirms whether detected items are relevant (e.g., clothing), 
influencing the UAV’s search pattern. 

7) Focused Searches: Analysts request specific flyovers to explore areas of interest, such as behind rocks. 
8) Reasoning and Retasking: Analysts use reasoning about missing information (“Value of Information”) to 

request UAVs to gather specific data to refine hypotheses. 
9) Unexpected Event: A helicopter crash is simulated, and the information is relayed to the UAVs.  
10) Swarm Adaptation and Analyst Split: 

a. ISR Sub-swarm and Sub Analyst group: Continues the search for terrorist indicators and signs of 
human habitation in teaming with the ISR Sub Analysts 

b. Search and Rescue Sub-swarm and Sub Analyst group: Focus on the crash site, using updated 
pattern recognition to identify wreckage and survivors, working collaboratively. 

 
The Importance of the Human-AI Teaming Use Case 
 
A use case such as the LVC scenario just described provides valuable insights into the performance and coordination 
of human-AI teams in complex operational environments. It evaluates team performance, identifies skill gaps for both 
human and AI participants, and informs the development of protocols for communication, data sharing, and decision-
making. In a training and mission rehearsal this could include: 
 

1) Team Performance Assessment: Evaluation of human-AI team performance in achieving mission objectives. 

2) Skill Gap Analysis: Identification of critical skills required by both human operators and AI systems for 
optimal team effectiveness. 

3) Protocol Development: Development of standardized protocols for communication, data sharing, and 
decision-making within the human-AI team. 

Furthermore, such a use case can be utilized for Parameter and Configuration Testing in order to evaluate various 
team configurations and operational parameters, and to conduct What-if Analysis to assess the impact of different 
decisions, resource allocations, and skill sets on mission outcomes. 

Beyond training applications, the scenario facilitates critical testing and analysis, including evaluating different team 
configurations, operational parameters, and decision-making strategies. Such insights would prove instrumental in 
establishing standards for LVC simulations to effectively support human-AI teams, in this case, ensuring they meet 
the demands of modern ISR and search and rescue missions; a step toward advancing human-AI collaboration in 
mission-critical environments. 
 
The previous is just an example of a use case that would emphasize human-AI teaming and would be addressable by 
LVC. Many others could be considered as well within the LVC framework such as the examples of AI defense 
applications discussed by Aaron Frank (Frank, 2022) which include: 
 

1) Attention Management (Live) 
AI monitoring of information flows and anomaly detection. 

2) Information Exploitation and Model Validation (Virtual) 
AI optimizing military operations based on specific problems 

3) Exploratory Analysis (Constructive) 
AI providing multiple explanations for intelligence, enhancing understanding of adversarial 
behavior. 

4) Autonomy and Principal–Agent Relations (Autonomy) 
Autonomous systems supporting logistics and C4ISR in battlespace operations. 
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THE ROLE OF MODELING AND SIMULATION ORGANIZATIONS IN OVERCOMING LIMITATIONS 
 
AI-enabled teams have the potential to significantly enhance the adaptive capacity of military forces by combining 
human judgment and expertise with AI's ability to process vast amounts of data and uncover patterns beyond human 
capability. Such teams can focus decision-makers on critical challenges, conduct robust exploration to identify novel 
solutions, and optimize decision-making at strategic, operational, and tactical levels. By integrating human and AI 
strengths, such teams have the potential to fundamentally transform the landscape of military operations, achieving 
together what neither AI nor humans can achieve alone. Modeling and Simulation (M&S) organizations are key to 
this transformation, offering a safe, scalable, and flexible platform for testing and refining human-AI collaboration 
within Live-Virtual-Constructive (LVC) environments. 
 
To unlock the full potential of human-AI teams, LVC experiments must realistically mirror the complexities of real-
world scenarios. AI has already shown how it can improve the design, execution, and assessment of software and 
systems; this should be applicable to LVC applications as well by helping to develop better models and enabling more 
realistic analyses of team performance under various conditions. But more importantly, LVC environments provide 
the means to explore crucial aspects of human-AI teaming, like trust, communication, shared decision-making, and 
adaptability to changing missions. The challenge is to effectively integrate human-AI teams in AI-enhanced 
environments, but doing so will require overcoming several key challenges and limitations of current LVC frameworks 
in the areas of implementation, validation, and operations. 
 
Implementation Challenges: 

 Interoperability: Integrating diverse systems linking live operators, virtual simulators, and software-
driven constructive elements demands smooth interaction across different data models and communication 
protocols (e.g., HLA, DIS), requiring complex and costly translators. 

 Cybersecurity: The interconnected LVC environment presents a large attack surface, where breaches can 
compromise training integrity and have real-world impacts. 

 Hardware and Software: Limited resources can restrict the scale and fidelity of LVC environments, 
reducing the number of entities and complexity of behaviors. 

 Data Management: The large volume of data generated during LVC events poses a significant challenge 
for after-action reviews. 

 
Validation Risks: 

 Verification, Validation, and Accreditation (VV&A): Rigorous VV&A is essential for trustworthy LVC 
platforms, but this process is challenging. Inadequate validation can lead to negative training outcomes. 

 Consistent Fidelity: Ensuring consistent quality across live, virtual, and constructive components is crucial 
for maintaining user immersion and trust. 

 Cognitive Load: Participants may struggle with distinguishing between live, virtual, and constructive 
entities, leading to confusion and reduced situational awareness. 

 
Operational Barriers: 

 Cost: LVC systems are expensive and require skilled personnel for maintenance and operation, 
representing a long-term investment. 

 Scalability: Performance can decline with increasing numbers of participants and entities. 
 Scenario Creation: Designing realistic, adaptive, and relevant training scenarios is complex and resource 

intensive. 
 Cultural Barriers: Resistance to trusting simulated outcomes over traditional live-only exercises can 

impede LVC adoption and integration into training programs. 
 
Future Directions and Recommendations 
 
To address these challenges, Modeling and Simulation leadership organizations can play a strong role in providing 
the necessary governance, technical guidelines, and interoperability frameworks to support the design, development, 
integration, and execution of synthetic training environments. To advance LVC environments in support of Human-
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AI Teaming, we propose that stakeholders in the M&S community undertake several key initiatives. These efforts 
would address emerging challenges associated with integrating adaptive, learning-enabled AI into LVC environments 
and optimizing human-AI collaboration for military and other complex operational scenarios. To this end, we 
recommend the following roles for the Modeling and Simulation community: 
 

1. Governance: M&S organizations should lead the development of clear governance structures by defining 
cybersecurity protocols and developing ethical guidelines for human-AI collaboration. These structures 
should be in place to ensure compliance and ethical behavior in LVC scenarios, promoting secure and 
ethical AI integration. 

2. Technical Guidelines: M&S organizations should seek to create and disseminate technical guidelines for 
AI-specific interoperability and human-AI teaming representation. These guidelines, including best 
practices for adaptive AI and standards for integrating advanced AI capabilities, would ensure seamless 
collaboration and effective representation within LVC environments. 

3. Interoperability Frameworks: To promote interoperability, M&S organizations must define frameworks 
that include protocols for AI interaction and standards for integrating diverse AI models. Extending the 
LVC paradigm for AI roles, these frameworks support consistent interaction and collaboration among 
varied simulation environments. 

4. Performance Evaluation: Developing enhanced evaluation metrics is crucial for assessing Human-AI 
team performance. M&S organizations should collaborate to establish metrics for trust, situational 
awareness, and mission effectiveness, providing benchmarks to evaluate AI reliability, predictability, and 
team resilience under dynamic conditions. 

5. Collaboration and Training: Facilitating collaboration across stakeholders, M&S organizations can lead 
by organizing working groups and aligning with international standards bodies like NATO and IEEE. By 
creating shared repositories and promoting best practices, such efforts can enhance multi-domain and 
international collaboration for human-AI teaming in LVC environments. 

The M&S community is uniquely positioned to lead the advancement of human-AI teaming through its traditional 
perspective that fuses mathematical principles and human insights. This perspective has historically created powerful 
models and simulation techniques that have transformed various fields while managing associated risks. As AI 
continues to evolve, it offers new modes of collaboration that enhance human capabilities within a burgeoning human-
AI ecosystem. The flexibility of adaptive, learning-enabled AI systems introduces emergent properties, making it 
crucial to design and operate these systems safely and effectively, particularly in collaborative roles with warfighters. 
The LVC paradigm provides a robust platform for refining human-AI teaming by allowing researchers and 
practitioners to explore, test, and optimize human-AI interactions in realistic, controlled environments. 
 
By embracing the five roles identified in this paper—governance, technical guidelines, interoperability frameworks, 
performance evaluation, and collaboration and training—the modeling and simulation community can lead LVC-
related initiatives to support human-AI teaming. These efforts will not only address immediate challenges but also 
enhance current LVC methods, solidifying the community's role as a principal enabler for future military and civilian 
applications of human-AI collaboration. 
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