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ABSTRACT

Spacecraft trajectory optimization presents a challenging control problem due to the complex, nonlinear dynamics
governing orbital mechanics and the high-dimensional continuous action space associated with thruster control. This
paper explores the ability of reinforcement learning agents to handle partially observable environments. We demon-
strate that the temporal modeling capabilities of LSTMs improve the agent’s ability to plan satellite maneuvers. Using
the high-fidelity Basilisk astrodynamics library, we demonstrate that a PPO agent augmented with an LSTM not only
achieves significantly higher performance in a partially observable satellite attitude control task but also quantitatively
establishes the advantage of recurrent memory over a memory-less agent in this specific domain..
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INTRODUCTION

Reinforcement Learning (RL) has emerged as a powerful approach for aerospace missions because it excels at decision-
making under uncertainty and over long time horizons (Forestieri and Casalino, 2025). Unlike traditional controllers
that react myopically to current errors, RL agents learn policies that consider long-term rewards, enabling a form of
planning or “situational awareness” beyond the immediate step (Elkins et al., 2020). This is especially useful in space
operations where sequences of actions (e.g. a series of thruster burns or attitude slews) must be optimized together to
achieve an end goal. Another key advantage is that RL does not require an exact physics model of the spacecraft or
environment; it can learn control policies model-free by trial and error in simulation (Loettgen et al., 2023). Studies
report that deep RL controllers can even outperform standard algorithms; for instance, a PPO-based attitude controller
was shown to outperform a classical quaternion feedback controller in simulation tests (Elkins et al., 2020).

Attitude control is a fundamental task for satellites — ensuring the spacecraft points in the right direction for com-
munication, imaging, or power. Traditionally, this is handled by feedback controllers like PD/PID loops, quaternion
feedback (e.g. QRF controllers), or LQR regulators. Such controllers are reliable and computationally cheap, but
they must be carefully tuned and often assume linearized or fixed dynamics. This application area has been studied
before (Elkins et al., 2020; Shi et al., 2022; Stephenson et al., 2024), and the goal of this work is to expand upon those
efforts by investigating the ability of recurrent neural networks (RNNs) to improve the ability of the agent in a partially
observed environment.

The main technique explored here is Long Short-Term Memory (LSTM). LSTM-enhanced reinforcement learning al-
gorithms demonstrate significant advantages over standard methods in partially observable environments, particularly
in aerospace, space, and defense domains where temporal memory and sequential decision-making are critical (Meng
et al., 2021). LSTM networks address fundamental limitations in standard RL by extending beyond the Markovian
assumption through sophisticated memory mechanisms. Standard reinforcement learning struggles when environmen-
tal states are hidden, sensors provide incomplete information, or critical data is distributed across multiple time steps.
LSTM networks excel by maintaining compressed observation histories through hidden states that encode relevant
temporal dependencies while filtering noise through selective gating mechanisms (Duell et al., 2012; Meng et al.,
2021).

Adding LSTM memory to RL agents is expected to yield several benefits. First, the policy can learn temporal strate-
gies: for example, it may recall how long it has been thrusting and adjust future thrust accordingly, rather than making
decisions solely on instantaneous state. This can smooth the control profile and reduce oscillations. Second, the
LSTM’s internal state can act as a surrogate for unmodeled dynamic variables or disturbances (e.g. slight modeling
errors in gravity), helping the agent adapt. Empirical results in analogous domains (e.g. automotive control (Yang
et al., 2024)) show that recurrent agents achieve higher rewards and fewer collision events than feedforward ones.

However, these advantages come with limitations. The LSTM variants of RL algorithms tend to have many more
parameters, making training slower and more data-intensive. Recurrent networks can be also harder to tune: issues like
vanishing/exploding gradients may arise despite LSTM’s gating structure proceedings (Bakker, 2001). Additionally,
if the episode lengths vary widely, zero-padding or truncated sequences must be handled carefully. Finally, the agent
is still model-free, so it may struggle with highly precise maneuvers where model-based optimal control excels.
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In this study, the focus is on exploring the ability of memory (in the form of an LSTM) to improve the performance
of the Proximal Policy Optimization (PPO) algorithm. In order to investigate the effect of aiding these RL approaches
with an LSTM, a satellite attitude control mission is created using the Basilisk Reinforcement Learning framework
(BSK-RL) (Stephenson and Schaub, 2024) which utilizes the Basilisk spacecraft simulation framework (Kenneally
et al., 2020). Basilisk is a modular, high-fidelity simulation environment that offers easy integration to reinforcement
learning environments such as Gymnasium (Towers et al., 2024) and Stable-Baselines3 (Raffin et al., 2021). This style
of mission has been used in previous RL efforts (Stephenson et al., 2024; Shi et al., 2022) due to the inherent partial
observability, and the direct analog to more complex missions. The results of this investigation show that the use
of an LSTM in conjunction with the PPO method can improve the performance of the reinforcement learning agent
being trained. Future efforts are planned to continue to explore the affect that partial observability can have on the
application of reinforcement learning algorithms to satellite tasking missions.

This paper is structured as follows: first, related work is presented, followed by a brief background on the relevant con-
cepts of Markov Decision Processes, Proximal Policy Optimization, and Long Short-Term Memory networks. Then
the simulated spacecraft environment and the specific configurations for our fully and partially observable experiments
are described. Subsequently, results are presented along with a comparative analysis, followed by a discussion of the
findings. Finally, the paper concludes with a summary of contributions and suggested directions for future research.

RELATED WORK

The survey by Hermann and Schaub (Herrmann and Schaub, 2023) provides a great overview of the use of RL for
spacecraft trajectory optimization. There are many investigations into the use of RL in this domain, and recent studies
have begun exploring the incorporation of time-sensitive data into an RNN. Recent research has successfully applied
deep RL to agile satellite attitude maneuvers. For example, agents trained with Proximal Policy Optimization or Deep
Deterministic Policy Gradient (DDPG) have achieved high-accuracy pointing during large-angle slews using only
discrete thruster or reaction wheel actions Elkins et al. (2020).

Of the many approaches towards using reinforcement learning to aid in spacecraft mission optimization, Gaudet et al
(Gaudet et al., 2020a,b,c) use meta-RL — both with and without RNNs — to attempt to find develop guidance systems for
spacecraft across different scenarios, Kolosa (Kolosa, 2019) uses a DDPG with Prioritized Experience Replay (PER)
as well as a novel parameter initialization technique, the work by Scorsoglio et al (Scorsoglio et al., 2022) uses image
based data along with an RNN, and the study by Yan et al leverages a hierarchical PPO architecture to enable missiles
to simultaneously guide toward targets and evade interceptors using two-layer structures with LSTM-enhanced policy
selectors (Yan et al., 2022).

The work by Hovell and Ulrich (Hovell and Ulrich, 2021) models spacecraft operations using a variant of the Deep
Deterministic Policy Gradient method, but without any sort of recurrent neural network to better capture temporal
information. More directly related, the work by Shi et al (Shi et al., 2022) models a satellite attitude control systems
using TD3-LSTM (Twin Delayed Deep Deterministic Policy Gradient with LSTM) demonstrate real-world success
in moving target tracking scenarios. The LSTM component learns target movement patterns from image positions,
enabling real-time desired attitude generation while optimizing energy consumption—a critical constraint in space
operations. Other similar efforts include the work by Wang et al (Wang et al., 2024) who investigate techniques for
intercept guidance against maneuvering targets under partial observability.

BACKGROUND
Markov Decision Processes

A Markov Decision Process (MDP) provides a mathematical framework for modeling sequential decision-making
problems under uncertainty. Formally, an MDP is defined as a tuple M = (S, A, P, R, ), where:

¢ S is a finite set of states representing all possible configurations of the system
» A is a finite set of actions available to the decision-making agent
e P:SxAxS —|0,1] is the state transition probability function, where P(s’|s, a) represents the probability
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of transitioning to state s’ given current state s and action a
e R:S x A — Ris the reward function, providing immediate feedback for taking action a in state s
* v € [0, 1] is the discount factor, determining the relative importance of immediate versus future rewards

The fundamental assumption underlying MDPs is the Markov property, which states that the future evolution of the
system depends only on the current state and action, independent of the history of states and actions that led to the
current state. Mathematically, this is expressed as:

P(St+1 = S/|St = S,At = a,St_l,At_l, .. .,SQ,A()) = P(St+1 = s'|St = S,At = a) (1)

The objective in an MDP is to find an optimal policy 7* : S — A that maximizes the expected cumulative discounted
reward V7 (s) = Er >0 V' R(St, Ar) | So = 5.

In the context of satellite simulation, MDPs provide a natural framework for modeling autonomous satellite operations,
constellation management, and mission planning scenarios. The adaptation involves careful design of the state space,
action space, and reward structure to capture the essential dynamics of satellite systems. For a single satellite mission,
the state space S typically encompasses the satellite’s orbital parameters, onboard resource levels, and operational
modes. Specifically, a state s € S might be represented as:

s=(p,v,0,E,M,D,T) 2

where p denotes the satellite’s position vector, v represents velocity, 6 captures attitude parameters, E indicates energy
levels, M represents memory utilization, D denotes data storage, and 7" reflects thermal conditions. The action space
A for satellite operations commonly includes attitude control maneuvers, thruster firings, communication scheduling,
data collection commands, and power management decisions.

The transition probabilities P(s’|s, a) incorporate orbital mechanics, environmental perturbations, and system dynam-
ics. For orbital propagation, these transitions often integrate gravitational forces, atmospheric drag, solar radiation
pressure, and third-body perturbations. The stochastic nature accounts for uncertainties in environmental models,
measurement noise, and actuator performance. The reward function R (s, a) is designed to reflect mission objectives
and operational constraints. For Earth observation missions, rewards might emphasize data quality and coverage.
However, selecting an appropriate reward for reinforcement learning is often difficult and needs to be tailored to each
individual application.

Partially Observable Markov Decision Processes

While MDPs assume complete state observability, many practical scenarios involve incomplete or noisy state infor-
mation. Partially Observable Markov Decision Processes (POMDPs) extend the MDP framework to handle such
situations. A POMDP is formally defined as a tuple Mpompp = (S, A, P, R, Q, O, ), where the first five elements
are identical to the MDP formulation, with additional components:

» Q) is a finite set of observations that the agent can receive
e 0:8x AxQ— [0,1] is the observation probability function, where O(ols’, a) represents the probability of
observing o after taking action a and transitioning to state s’

Since the true state is not directly observable, the agent must maintain a belief state b;, which is a probability distribu-
tion over possible states:

be(s) = P(S¢ = s|o1,a1,02,a2,...,0¢) (3)
and the belief state is updated using Bayes’ rule after each observation.
POMDPs are particularly well-suited for satellite simulation scenarios where state estimation uncertainty is signifi-
cant. Common sources of partial observability in satellite systems include sensor limitations, communication delays,

environmental noise, and intermittent ground contact windows. In satellite applications, the observation space 2 typ-
ically consists of sensor measurements, telemetry data, and ground-based tracking information. For a remote sensing
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satellite, observations might include:

0= (TGPS; aMU Tthermala Ppowera Sstar) (4)

where rgps represents GPS position measurements (when available), apqy denotes inertial measurement unit read-
ings, Tinermal captures thermal sensor data, Fyower reflects power system telemetry, and Sy, represents star tracker
observations.

The observation probability function O(o|s’, a) models the relationship between true system states and available mea-
surements. Belief state maintenance becomes crucial for satellite operations under partial observability. The belief
state must integrate orbital dynamics models with measurement updates while accounting for model uncertainties and
observation noise. The POMDP framework enables sophisticated autonomous satellite behaviors, including adaptive
sensor scheduling based on belief state uncertainty, robust trajectory planning under state estimation errors, and fault
detection and isolation strategies.

Proximal Policy Optimization

Proximal Policy Optimization (PPO) (Schulman et al., 2017) addresses the challenge of stable policy updates in re-
inforcement learning by constraining policy changes to a trusted region. It is a successor to the Trusted Region
Policy Optimization (TRPO) (Schulman et al., 2015). Both policies can be used for either discrete or continuous ac-
tions spaces. PPO in particular has been applied to many different areas, including spacecraft optimization problems
(Elkins et al., 2020; Yan et al., 2022; Stephenson et al., 2024).

PPO optimizes a clipped surrogate objective function, L, that prevents excessively large policy updates:

L(0) = E [min (r:(0) A(s, a),clip(r+(0),1 — e, 1 + €) A(s, a))] (5)

% is the probability ratio between new and old policies, A(s, a) represents the advantage
old “1et

estimate, and e is the clipping parameter controlling the policy update magnitude. The advantage function can be
implemented different ways, but is meant to capture whether a given action from some state, (s, a), is better or worse
than the other actions the agent could have taken from that state.

where 7.(0) =

PPO alternates between collecting trajectory data using the current policy and performing multiple epochs of mini-
batch optimization on the collected data. PPO’s stability and sample efficiency make it well-suited for complex
satellite mission planning scenarios where exploration must be carefully managed to avoid unsafe configurations. The
algorithm excels in discrete action spaces common in high-level mission planning tasks. PPO’s clipped objective
function prevents policy degradation during training, which is crucial for satellite applications where policy rollbacks
may not be feasible. The entropy regularization encourages exploration of diverse mission strategies while maintaining
operational safety through conservative policy updates.

Long Short-Term Memory Networks

Long Short-Term Memory (LSTM) networks address the vanishing gradient problem in traditional recurrent neural
networks, making them exceptionally well-suited for processing the long-duration time series data characteristic of
satellite operations. LSTM networks employ a sophisticated gating mechanism to selectively retain and forget infor-
mation over extended temporal sequences. LSTM networks excel in applications requiring temporal pattern recog-
nition, anomaly detection, and predictive modeling. The extended memory capabilities enable processing of orbital
dynamics, thermal cycles, and long-term degradation patterns spanning multiple orbital periods.

The combination of LSTM networks with reinforcement learning algorithms creates powerful frameworks for satellite
control under partial observability and temporal dependencies. LSTM-enhanced policy networks can maintain mem-
ory of past observations and actions, enabling more informed decision-making in scenarios with delayed consequences
or intermittent observations.
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ENVIRONMENT SIMULATION

In this study, the Basilisk astrodynamics library (Kenneally et al., 2020) is used to simulate spacecraft dynamics. This
environment simulates a spacecraft attitude control problem where the satellite is attempting to point towards a given
target direction. Because this scenario has the property of partial observability, it can demonstrate the advantages of
recurrent policies over memory-less ones in sequential decision-making tasks.

The complete spacecraft state x € X’ consists of x = [q, w, t]T, where:

q = [q1,92, 93, q]T € R* is the attitude quaternion (unit norm)
W = Wy, wy, w.]T" € R3 is the angular velocity in body frame (rad/s)
o t = [ty,ty,t:]T € R3 is the target direction unit vector in inertial frame

The agent observes only a subset of the state, creating partial observability: 0 = [w, t,0.]T € O C R, where:

* w €[5, 5] rad/s is the angular velocity
e t € [—1,1]3 is the target direction (unit vector)
* 6. € [0, 7] is the pointing error magnitude

Crucially, the current attitude q is not observable, requiring the agent to integrate angular velocity over time to estimate
orientation.

The control input is a 3D torque vector:

u=7T= [vaTy; TZ}T S [*Tmamvaam]g (6)

where 7,4, = 1.0 N-m.

The spacecraft dynamics follow Euler’s equations for rigid body rotation.
Reward Function

The reward functionr : § x A — R is:

T‘(S, a) = Tpoint + Tprogress + Tvel + Tcontrol T Tsuccess T Tosc (7)
where:
* rpoint = max(0,1 — @, /m) - pointing accuracy reward
* Tprogress = 0.2 - max(0, Ag,) - improvement bonus
* 7pe1 = —0.05||w]|? - angular velocity penalty
* Teontrot = —0.01]|u|? - control effort penalty

® Tsuccess = 5.0 - ]1[95 < etol] - success bonus
* rose = —1.0- 1[0, < 0.3 A ||w]|| > 0.5] - oscillation penalty

The reward components were selected based on prior work in attitude control and tuned through empirical observation.
A formal sensitivity analysis is planned to explore how scaling or omitting terms affects convergence and stability in

future experiments.

The objective is to orient the spacecraft such that its body-fixed z-axis aligns with the target direction:

Goal: 6, = arccos(b,, - t) < 040 3)

where:
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* b, is the body z-axis expressed in the inertial frame
¢ 0;o; = 0.2rad (= 11.5) is the tolerance
* Time limit: 200 steps (20 seconds with At = 0.1 s)

The key characteristics of this scenario are the partial observability and the memory requirement. The agent cannot
directly observe its orientation, only angular velocity and target direction. Because success requires integrating angular
velocity over time to estimate current attitude, the expectation should be that it will favor recurrent policies. The
current environment isolates rotational dynamics to focus purely on the effects of partial observability. Incorporating
translational dynamics, fuel constraints, or multi-body perturbations is a logical extension that aligns with planned
work on full orbital maneuvering scenarios.

This environment serves as a simplified model for several real spacecraft control problems:

Earth Observation Satellites: Pointing cameras or sensors at specific ground targets
Communication Satellites: Maintaining antenna pointing toward ground stations
Space Telescopes: Precision pointing for astronomical observations

Solar Panel Orientation: Tracking the sun for optimal power generation

Rendezvous and Docking: Attitude alignment during spacecraft proximity operations

Dok e =

The partial observability aspect mirrors real scenarios such as: star trackers being unavailable (e.g., due to sun interfer-
ence, Earth occlusion), only rate gyroscopes functioning (common failure mode), or low-cost missions with minimal
sensor suites (e.g., not all state variables can be observed).

Configuration 1: Full Observability

This configuration represents an idealized scenario where the agent has access to a direct, real-time measurement of
its performance. The observation o; provided to the agent at time ¢ is a 7-dimensional vector:

0 = [Wg, Wy, W, dy, dy, d, ep | )
—_——— —— =~
Wt darget pointing error

where:

» w; € R is the spacecraft’s angular velocity in its body frame.

* dyarger € R3 is the unit vector of the target direction in the inertial frame.

* ¢, € [0, 7] is the scalar pointing error, which is the angle between the spacecraft’s current pointing direction and
the target direction.

Because the pointing error e, is provided directly, the observation is Markovian. An agent has all the information it
needs within a single observation to select an optimal action. It knows its rate of rotation (w;) and how far it is from
the goal (ep). A standard, memory-less agent is well-suited for this task.

Configuration 2: Partial Observability

This configuration simulates a more realistic and challenging scenario where a direct measurement of the pointing
error is unavailable. The observation o; is now a 6-dimensional vector, with the pointing error explicitly removed:

Ot = [wm7wyawz;d;v;dy;dz] (10)
N N——
Wi dmrget

Without the pointing error, the agent cannot know its current attitude from a single observation. It knows how fast
it is rotating (w;) but not which way it is currently facing. To solve the task, the agent can infer its orientation by
integrating the history of its angular velocities over time. This transforms the problem into a Partially Observable
Markov Decision Process (POMDP). A memory-less PPO agent will struggle significantly because two situations
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with identical observations could have drastically different attitudes and require opposite control actions.

A recurrent agent, such as PPO-LSTM, is designed for such problems. The LSTM’s internal hidden state, h;, can
learn to function as a state estimator. By processing the sequence of observations, the LSTM can effectively maintain
an internal representation that approximates the spacecraft’s true, unobserved attitude, allowing it to make temporally
coherent and informed decisions.

The key difference between the two configurations is whether the attitude error (the difference between current and
target orientation) is included in the observation space. The partially observable setting favors policies with memory,
such as those used by PPO-LSTM. The LSTM allows the agent to integrate information over time, reconstructing
latent state variables (like attitude error) by remembering previous observations and actions.

EXPERIMENTS AND RESULTS

The training environments both leverage BSK-RL Stephenson and Schaub (2024). They are described in detail in the
previous section. The only difference between them is the inclusion of the pointing error as an extra observation for
the agent in the fully observable case.

Both base algorithm implementations come out of the Stable Baselines 3 project (Raffin et al., 2021). The PPO
implementation comes from the main stable-baselines3 repository!, while the PPO-LSTM uses the RecurrentPPO
implementation from the prototype repository, sb3-contrib®. The parameters used for both environments was the same
between the two environments, and they’re provided in the tables below.

The hyperparameters for both PPO and RecurrentPPO, detailed in Tables 1 and 2, were chosen based on a combination
of established practices and empirical tuning. Initial values were sourced from the default configurations in the Stable-
Baselines3 library, which are benchmarked across a wide range of environments. These were then fine-tuned to ensure
stable learning and convergence for our specific attitude control task. The learning rate of 1 x 10~4, for example, was
found to provide a good balance between training speed and stability for both agents.

Table 1: PPO Hyperparameters for Attitude Control

| Parameter | Value \
Policy MlipPolicy
Learning Rate 1x1074
n_steps 64
Batch Size 256
n_epochs 10
Entropy Coefficient 0.02
Value Function Coef 0.5
Max Grad Norm 0.5
Network Architecture [256, 256]
Observation Normalization | True
Reward Normalization True

Each agent was trained for 200,000 steps, and then evaluated for 100 episodes. Because each episode has a maximum
step length of 200 steps (many will terminate sooner), this means that each agent is trained on at least 1,000 episodes.
We chose average reward for simplicity and consistency with Stable-Baselines3 evaluation protocols. In the future,
including success rate, episode length, and action smoothness would yield additional actionable insights.

In the fully observable environment, the two agents perform very similarly as can be seen in Figure 1. The plots
represent a moving average of the raw reward which is aggregated over a window size of 50 episodes. Since training

Thttps://github.com/DLR-RM/stable-baselines3
Zhttps://github.com/Stable-Baselines-Team/stable-baselines3-contrib
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Table 2: RecurrentPPO Hyperparameters for Attitude Control

Parameter Value
Policy MlpLstmPolicy
Learning Rate 1x 1074
n_steps 256
Batch Size 64
n_epochs 10
Entropy Coefficient 0.02
Value Function Coef 0.5

Max Grad Norm 0.5
LSTM Hidden Size 256
Network Architecture [256, 256]
Enable Critic LSTM True
Observation Normalization | True
Reward Normalization True

is based on the number of steps conducted, the number of completed episodes is variable.

Moving Average Episode Rewiard (Full Observabilty) Moving Average Episode Reward (Full Observability)

i [l |
2200 /“. "

/!
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Figure 1: Moving Average of Training Rewards in the Fully Observable Environment

The next plots, shown in Figure 2, show the same moving average reward plot for the partially observable environment
described in Configuration 2. In this case, the PPO-LSTM defined by the RecurrentPPO from Stable-Baselines3 has a

clear advantage.

Moving Average Episode Reward (Partial Observability) Moving Average Episode Reward (Partial Observability)
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Figure 2: Moving Average of Training Rewards in the Partially Observable Environment

Finally, Figure 3 shows the performance of the learned policy on the evaluation environment. The evaluation envi-
ronment used here is an exact replica of the training environment, but the performance on the training environment
does not always translate perfectly. PPO actually outperformed PPO-LSTM in one of the tests, but performance tends
to be very comparable between the two methods. In the partially observable case, PPO-LSTM performs significantly
better. In the first trial, it improves the average reward across the evaluation cases by 66.64% and in the second trial it
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provided an improvement of 87.69%. To provide a more rigorous comparison, the mean and standard deviation of the
average reward across the 100 evaluation episodes are presented in ??.

PPO vs PPO-LSTM Performance (Updated) PPO vs PPO-LSTM Performance
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Figure 3: Evaluation rewards comparing PPO and PPO-LSTM
CONCLUSION & FUTURE WORK

Reinforcement learning is proving to be a valuable tool for spacecraft optimization problems. Our findings specifically
demonstrate that for complex tasks like attitude control under partial observability—a situation analogous to real-world
scenarios like temporary star tracker failure or missions with minimal sensor suites—agents with recurrent memory
are not just beneficial, but potentially essential. This has direct implications for developing more robust systems for
onboard mission planning, real-time anomaly response, and autonomous rendezvous and docking, where complete
state information is often not guaranteed.

While this study focused on the direct comparison between a memory-less policy and a recurrent one, future work
should include other techniques for handling partial observability, such as frame stacking. Comparing PPO-LSTM
against a PPO agent with stacked observations would help determine if the learned, dynamic memory of an LSTM
offers advantages over a fixed, finite history of observations. We limited our initial scope to PPO and PPO-LSTM
to ensure a controlled comparison between memory-less and memory-augmented policies under partial observability.
Including TD3 or SAC variants is a compelling next step, especially given their deterministic nature and suitability for
continuous control. Additionally, exploring ideas designed to improve the robustness of reinforcement learning tech-
niques in the domain of spacecraft optimization (e.g., the varied initialization conditions proposed by Kolosa (2019))
may also prove helpful in the context of mitigating the challenges presented by partially observable environments.

The agents in this study were trained for a relatively short 200,000 steps. While this was sufficient to demonstrate the
performance difference in a short-duration mission context, exploring longer training horizons is a key area for future
research. Extended training could reveal more about the asymptotic performance of each agent and their robustness
over mission timelines that span days or weeks, which is especially relevant for tasks like long-term autonomous orbit
maintenance.

REFERENCES

Bakker, B. (2001). Reinforcement learning with long short-term memory. Advances in neural information processing
systems, 14.

Duell, S., Udluft, S., and Sterzing, V. (2012). Solving partially observable reinforcement learning problems with
recurrent neural networks. In Neural Networks: Tricks of the Trade: Second Edition, pages 709—733. Springer.

Elkins, J. G., Sood, R., and Rumpf, C. (2020). Autonomous spacecraft attitude control using deep reinforcement
learning. In International Astronautical Congress.

Forestieri, A. and Casalino, L. (2025). Space trajectory planning with a general reinforcement-learning algorithm.
Aerospace, 12(4):352.

2025 Paper No. nnnn Page 10 of 11



MODSIM World 2025

Gaudet, B., Linares, R., and Furfaro, R. (2020a). Adaptive guidance and integrated navigation with reinforcement
meta-learning. Acta Astronautica, 169:180—-190.

Gaudet, B., Linares, R., and Furfaro, R. (2020b). Six degree-of-freedom body-fixed hovering over unmapped asteroids
via lidar altimetry and reinforcement meta-learning. Acta Astronautica, 172:90-99.

Gaudet, B., Linares, R., and Furfaro, R. (2020c). Terminal adaptive guidance via reinforcement meta-learning: Appli-
cations to autonomous asteroid close-proximity operations. Acta Astronautica, 171:1-13.

Herrmann, A. and Schaub, H. (2023). A comparative analysis of reinforcement learning algorithms for earth-observing
satellite scheduling. Frontiers in Space Technologies, 4:1263489.

Hovell, K. and Ulrich, S. (2021). Deep reinforcement learning for spacecraft proximity operations guidance. Journal
of spacecraft and rockets, 58(2):254-264.

Kenneally, P. W., Piggott, S., and Schaub, H. (2020). Basilisk: A flexible, scalable and modular astrodynamics
simulation framework. Journal of aerospace information systems, 17(9):496-507.

Kolosa, D. S. (2019). A reinforcement learning approach to spacecraft trajectory optimization. Western Michigan
University.

Loettgen, J. L., Ceriotti, M., Aragon-Camarasa, G., and Worrall, K. (2023). Deep reinforcement learning for spacecraft
attitude tracking manoeuvres. University of Glasgow Technical Report.

Meng, L., Gorbet, R., and Kuli¢, D. (2021). Memory-based deep reinforcement learning for pomdps. In 2021
IEEE/RSJ international conference on intelligent robots and systems (IROS), pages 5619—-5626. IEEE.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann, N. (2021). Stable-baselines3: Reliable
reinforcement learning implementations. Journal of machine learning research, 22(268):1-8.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region policy optimization. In Interna-
tional conference on machine learning, pages 1889-1897. PMLR.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.

Scorsoglio, A., D’ Ambrosio, A., Ghilardi, L., Gaudet, B., Curti, F., and Furfaro, R. (2022). Image-based deep rein-
forcement meta-learning for autonomous lunar landing. Journal of Spacecraft and Rockets, 59(1):153-165.

Shi, Z., Zhao, F., Wang, X., and Jin, Z. (2022). Satellite attitude tracking control of moving targets combining deep
reinforcement learning and predefined-time stability considering energy optimization. Advances in Space Research,
69(5):2182-2196.

Stephenson, M., Mantovani, L., Phillips, S., and Schaub, H. (2024). Using enhanced simulation environments to
accelerate reinforcement learning for long-duration satellite autonomy. In AJAA SCITECH 2024 Forum, page 0990.

Stephenson, M. A. and Schaub, H. (2024). Bsk-rl: Modular, high-fidelity reinforcement learning environments for
spacecraft tasking. In 75th International Astronautical Congress, Milan, Italy, IAF.

Towers, M., Kwiatkowski, A., Terry, J., Balis, J. U., De Cola, G., Deleu, T., Goulao, M., Kallinteris, A., Krimmel, M.,
KG, A, et al. (2024). Gymnasium: A standard interface for reinforcement learning environments. arXiv preprint
arXiv:2407.17032.

Wang, X., Deng, Y., Cai, Y., and Jiang, H. (2024). Deep recurrent reinforcement learning for intercept guidance law
under partial observability. Applied Artificial Intelligence, 38(1):2355023.

Yan, M., Yang, R., Zhang, Y., Yue, L., and Hu, D. (2022). A hierarchical reinforcement learning method for missile
evasion and guidance. Scientific Reports, 12(1):18888.

Yang, Z., Wu, Z., Wang, Y., and Wu, H. (2024). Deep reinforcement learning lane-changing decision algorithm for
intelligent vehicles combining Istm trajectory prediction. World Electric Vehicle Journal, 15(4):173.

2025 Paper No. nnnn Page 11 of 11



	ABSTRACT
	ABOUT THE AUTHORS
	Introduction
	Related Work
	Background
	Markov Decision Processes
	Partially Observable Markov Decision Processes 
	Proximal Policy Optimization
	Long Short-Term Memory Networks

	Environment Simulation
	Reward Function
	Configuration 1: Full Observability
	Configuration 2: Partial Observability

	Experiments and Results
	Conclusion & Future Work

