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ABSTRACT 

 

Elevated stress levels impair defense operations, compromising decision-making and operational effectiveness. 

Current simulations often lack emotional adaptability, limiting their ability to prepare human-AI teams for high-stress 

scenarios. This research presents a simulation framework for modeling, monitoring, and mitigating emotional overload 

in human-AI defense teams, leveraging real-time physiological and behavioral inputs for adaptive AI decision-

making. While AI applications in defense are expanding, most systems remain logic-driven, overlooking human 

emotional and cognitive states. We introduce emotion-aware AI agents that dynamically adjust task load based on 

operators' stress levels, enhancing mission outcomes and resilience. The developed discrete-event simulation model, 

based on Markov state transitions, utilizes physiological metrics such as heart rate variability (HRV) and galvanic skin 

response (GSR) to drive transitions in emotional states. A 30,000-step simulation with 100 agents compared to 

Emotion-Aware AI and Emotion-Agnostic AI. Transition probabilities were derived from affective computing 

research and integrated via a multimodal data model. The Emotion-Aware AI condition-maintained operators in calm 

states 40.6% of the time (SD = 7.7), compared to 33.1% (SD = 6.8) for the Emotion-Agnostic condition. High-risk 

Overloaded states decreased from 33.3% to 26.2%, a 21.4% reduction. Statistical analysis confirmed significant 

differences, t (99) = 25.84, p < .001, Cohen’s d = 1.04, highlighting the efficacy of emotionally adaptive systems in 

enhancing resilience. Future work will explore integrating this framework into virtual reality training simulations and 

AI-assisted mission planning to provide adaptive support in defense scenarios.    
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INTRODUCTION  

 

In modern defense operations, human-AI teaming is vital for managing complex tasks under stress, with AI assisting 

in surveillance, target recognition, and strategy adjustments while ensuring human oversight (Chen et al., 2025). This 

research extends the principle of the quantified self-movement, which utilizes continuous biometric monitoring for 

personalized optimization, to military contexts. It demonstrates how real-time physiological data can inform AI 

systems to enhance warfighter performance while protecting against excessive stress. Cognitive load, the mental effort 

needed to process information, impacts operator performance, causing stress that hinders decision-making and 

reaction times (Kallinen & Ojanen, 2023). Research indicates military operations induce significant physiological 

stress responses, which can persist during extended training and operational periods (Corrigan et al., 2023). Current 

defense AI systems often struggle with trust calibration, decision autonomy, and adaptability, frequently neglecting 

the emotional and cognitive states of human operators (Chen et al., 2025; Khare et al., 2024). 

 

Building on advances in wearable sensor technology and affective computing, emotion-aware AI systems adjust task 

load based on stress indicators, providing a promising method to mitigate these effects (Vistorte et al., 2024; Haque 

et al., 2024). Research shows that signals like heart rate variability (HRV), galvanic skin response (GSR), and 

electroencephalography (EEG) reflect emotional states and cognitive load (Haque et al., 2024; Nechyporenko et al., 

2024; McDuff et al., 2014). Multimodal sensor fusion of HRV, GSR, and EEG has improved stress prediction 
accuracy, with support vector machine (SVM) classifiers achieving 85–95% performance in controlled settings (Raza 

et al., 2024; Gohumpu et al., 2023). 

 

This study presents a simulation framework for evaluating the effectiveness of an Emotion-Aware AI in managing 

cognitive load during high-stress defense scenarios. Unlike traditional simulations, this model uses real physiological 

data (HRV and GSR) from the Stress Recognition in Automobile Drivers dataset (Healey & Picard, 2005) to simulate 

human stress states accurately. The simulation employs a Markov-based discrete-event model to capture transitions 

between Calm, Stressed, and Overloaded states, utilizing 100 virtual agents with diverse archetypes. The main goal is 

to compare Emotion-Aware AI, which adjusts task load based on stress detection, with Emotion-Agnostic AI, which 

does not adapt. The results indicate that Emotion-Aware AI is likely to keep operators in Calm states, enhancing 

performance metrics such as reaction time, visual accuracy, and reasoning score.  

 

RELATED WORK  

 

Physiological Stress Monitoring in Defense Contexts 

 

Military personnel face unique stressors that impair cognitive performance, which is crucial for mission success. 

Kallinen and Ojanen (2023) conducted a 20-day winter military training study showing that high stress increased 

reaction times by 91 ms, reduced visual accuracy by 6.7%, and impaired grammatical reasoning by 14.1% (BRT score 

from 35.0 to 30.1). Recovery to baseline performance required about 10 days post-training, highlighting the lasting 

impact of stress. These findings inform baseline parameters in our simulation modeling stress-related performance 

degradation. 
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Price et al. (2024) found significant correlations between post-traumatic stress symptoms (PTSS) and operational 

failure rates (r = 0.443, p < 0.001) in Special Operations Forces (SOF), with PTSS scores from 17 to 67 on the PCL-

M scale. Their analysis showed that PTSS mediates the link between combat experience and cognitive failures 

(indirect effect: r = 0.149), with combat experience related to PTSS development (r = 0.336). This mediation 

underscores the need for proactive stress management systems to mitigate emotional overload, a core objective of our 

emotion-aware AI framework. Martin et al. (2020) reviewed factors affecting military cognitive performance, 

identifying heat, dehydration, undernutrition, and fatigue as key inhibitors. They noted that aerobic fitness and proper 

nutrition enhance cognitive resilience, while age-related declines in reaction time and working memory are critical for 

operator assessment. These factors are reflected in our simulation’s environmental penalty and agent archetype 

variations, which account for individual differences in stress response. 

 

Advances in affective computing enable real-time emotion recognition through physiological monitoring, essential 

for adaptive AI systems (Haque et al., 2024; Nechyporenko et al., 2024; McDuff et al., 2014). Haque et al. (2024) 

highlighted HRV LF/HF ratios as key stress indicators, with multimodal sensor fusion (HRV, GSR, PPG) 

outperforming single methods and achieving high SVM classification accuracy. McDuff et al. (2014) validated remote 

HRV measurement for cognitive stress detection, achieving 85% accuracy and confirming LF/HF ratios surpass 

simple cardiac metrics. Nechyporenko et al. (2024) achieved 83.3% stress classification accuracy with k-NN on the 

PhysioNet dataset, identifying 3-minute windows as optimal for stress detection, aligning with our 180-second 

evaluation window. Gohumpu et al. (2023) confirmed SVM superiority in multimodal processing (PPG, GSR, skin 

temperature), with HRV showing strong arousal/valence discrimination. These findings support our multimodal 

approach, integrating HRV and GSR with simulated EEG for stress modeling (Khare et al., 2024). 

 

EEG-Based Cognitive Load and Emotion Recognition 

 

Electroencephalography (EEG) provides insights into cognitive load and emotions, enhancing HRV and GSR for 

stress detection. Wang et al. (2023) found CNNs excel in EEG-based emotion recognition, with hybrid CNN-RNN 

models reaching 99% accuracy on datasets like DEAP, SEED, MAHNOB-HCI. Our simulation uses a simpler SVM, 

but these results indicate potential for advanced EEG integration. Ma et al. (2024) highlighted temporal-spatial-

frequency hybrid models, including graph-based methods, for multi-scale brain activity. EEG’s robustness against 

deception makes it valuable for high-security applications, supporting its role in our classification. Pande et al. (2023) 

showed beta/alpha ratios correlate with cognitive engagement, achieving 88.6% accuracy, and our simulation uses a 

simulated ratio to assess cognitive load. Jacques et al. (2024) demonstrated EEG neurofeedback improves military 

performance by modulating rhythms, enhancing reaction time and stress regulation. Their insights on amygdala down-

regulation inform our simulation’s recovery mechanisms, modeling transitions from Overloaded to Calm states in the 

Emotion-Aware AI condition. 

 

METHODOLOGY 

 

Digital Twin Simulation Framework 

 

A digital twin simulation leveraging quantified self-principles was conducted to compare Emotion-Aware AI with 

Emotion-Agnostic AI in VR defense training. The simulation involved 100 agents operating across 30,000 steps, 

utilizing a four-layer architecture comprising Input, Processing, AI Control, and Analytics layers. The Input Layer 

captures continuous biometric data streams, including agent profiles (such as PTSS scores, cognitive resilience, and 

experience), environmental conditions, real-time physiological signals, and preprocessed data based on military 

archetypes. In the Processing Layer, an SVM classifier processes wearable sensor data using thresholds: values over 

1.8 denote 'Overloaded', values over 1.3 indicate 'Stressed', and values of 1.3 or less signify 'Calm'. Feature weights 

assigned to HRV LF/HF ratio, GSR, and simulated EEG are 0.35, 0.35, and 0.30, respectively. The AI Control Layer 

features an Emotion-Aware module that adjusts agent responses based on classified states. For example, it decreases 

the task load by 0.05 times the product of adaptation compliance and learning rate during Stressed states, with a 

minimum of 0.3. Dual-tasking penalties are reduced by 0.02 times the adaptation strength, with a minimum of 0. For 

Overloaded states, task load reduction is 0.08 times the same product, with a minimum of 0.2, and dual-tasking 

penalties are decreased by 0.04 times the adaptation strength, with a minimum of 0. All these adjustments mirror 

quantified self-optimization strategies, promoting recovery and realistic adaptability. Lastly, the Analytics Layer logs 

biometric data to facilitate explainability, performance tracking, and state monitoring. For instance, the simulation 

results showed that 40.6% of the time agents were Calm in the Emotion-Aware condition compared to 33.1% in the 
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Emotion-Agnostic condition, representing a 22.9% increase in Calm states. All actions and decisions are recorded for 

thorough analysis and validation. 

 

 
 

Figure 1. Digital Twin Simulation Architecture for Emotion-Aware Cognitive Load Management 

Data Source and Preprocessing 

 

The PhysioNet Stress Recognition dataset comprises continuous HRV and GSR biometric data from 18 driving 

sessions (16 complete, 2 partial) spanning 169 intervals of varying stress levels (Healey & Picard, 2005; Goldberger 

et al., 2000). ECG signals were bandpass filtered (0.5–7 Hz) with R-peak detection; HRV LF/HF ratios were calculated 

over 3-minute windows using frequency-domain analysis. GSR signals were filtered and normalized to the range of 

[0, 1]. Simulated EEG beta/alpha ratios indicated cognitive engagement (Pande et al., 2023). The SVM classifier 

employed thresholds (overloaded: >1.8, stressed: >1.3, calm: ≤1.3) to classify states based on the dataset's stress 

distribution. 

 

Markov State Transition Model 

 

The simulation engine used a discrete-event model based on Markov transitions among three emotional states: Calm, 

Stressed, and Overloaded (Haque et al., 2024). Transition probabilities were calculated dynamically based on 

individual (PTSS scores, experience levels, cognitive resilience, stress sensitivity, adaptation compliance; Price et al., 

2024; Vine et al., 2021), environmental (task load, mission complexity, time pressure, environmental stress levels; 

Martin et al., 2020), physiological (preprocessed HRV, GSR, simulated EEG with physiological noise; McDuff et al., 

2014; Nechyporenko et al., 2024), and AI intervention factors (Emotion-Aware vs. Emotion-Agnostic). The Emotion-

Aware condition led to a 21.4% reduction in Overloaded states (e.g., P(Calm|Calm) = 0.591 vs. 0.528). 

 

Agent Design and Individual Differences 

 

To simulate diverse military operators, 100 agents were initialized across five archetypes, Veteran High Performers 

(15%), Experienced Stable (25%), Average Operators (30%), Stressed Performers (15%), High-Risk Individuals 

(15%), varying in experience, stress susceptibility, and resilience (see Table 1). Key parameters, experience levels, 

PTSS scores, and cognitive resilience, followed archetype-specific truncated normal distributions, with defaults such 

as high experience (M=0.85, SD=0.08) and resilience (M=0.90, SD=0.12) for Veterans, and lower experience 

(M=0.45, SD=0.20), higher PTSS (M=45.0, SD=25.0), and lower resilience (M=0.45, SD=0.22) for High-Risk 

Individuals. Additional parameters, such as stress sensitivity and recovery, affected state transitions (Calm, Stressed, 

Overloaded) and performance metrics, reflecting the diversity of military personnel in high-stress scenarios (Vine et 

al., 2021). This ensures the simulation models have varied stress responses in operational contexts. 
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Table 1. Agent Archetype Parameters for Simulation 

Archetype Propo

rtion 

Experience Level PTSS Score Cognitive Resilience 

  M (SD) [Range) M (SD) [Range] M (SD) [Range] 

Veteran High Performers 15% 0.85 (0.08) [0.2-1.0) 18.0 (12.0) [17-67) 0.90 (0.12) [0.2-1.0] 

Experienced Stable 25% 0.75 (0.12) (0.2-1.0] 22.0 (15.0) [17-67) 0.80 (0.15) [0.2-1.0] 

Average Operators 30% 0.65 (0.15) [0.2-1.0] 25.0 (18.0) [17-67) 0.70 (0.18) [0.2-1.0] 

Stressed Performers 15% 0.55 (0.18) [0.2-1.0) 35.0 (22.0) [17-67) 0.60 (0.20) [0.2-1.0] 

High-Risk Individuals 15% 0.45 (0.20) [0.2-1.0) 45.0 (25.0) [17-67) 0.45 (0.22) [0.2-1.0) 

 

Simulation Mechanics and AI Adaptation 

 

The simulation modeled emotional dynamics using physiological data and AI responses. The SVM classifier predicted 

the agent’s state with HRV, GSR, and simulated EEG feature weights of 0.35, 0.35, and 0.30, respectively (Haque et 

al., 2024). Classification thresholds were >1.8 (Overloaded), >1.3 (Stressed), and ≤1.3 (Calm). 

 

Emotion-Aware AI Condition 

For stressed states, task load reduced by 0.05 × (adaptation compliance × adaptation_learning_rate), minimum 0.3, 

and dual-tasking penalties by 0.02 × adaptation strength, minimum 0. For overloaded states, task load reduced by 0.08 

× (adaptation compliance × adaptation_learning_rate), minimum 0.2, and dual-tasking penalties by 0.04 × adaptation 

strength, minimum 0. Adaptation effectiveness depended on compliance (M = 0.75, range [0.2–1.0]) and learning rate 

(M = 0.5, range [0.1–1.0]), archetype-specific default values. 

 

Emotion-Agnostic AI Condition 

This condition-maintained parameter (task load, M = 0.5, and dual-tasking penalty, M = 0.15), representing traditional 

AI systems (Khare et al., 2024). Performance metrics (reaction time, visual accuracy, reasoning score) were calculated 

per step, with stress penalties: 30 ms reaction time increase and 2% reductions in visual accuracy and reasoning score 

for Stressed states, and 60 ms increase with 5% and 6% reductions for Overloaded states, based on the simulation 

model (Kallinen & Ojanen, 2023). Base Calm stability was 0.72 × environmental resistance (range: 0.22–0.72). 

 

Statistical Analysis and Validation 

 

Descriptive statistics (means, standard deviations) were computed for state percentages and performance metrics. 

Paired-sample t-tests compared Calm state percentages, with effect sizes via Cohen’s d (d = 1.04), t(99) = 25.84, p < 

.001. Transition matrices assessed steady-state distributions (Haque et al., 2024). The SVM classifier’s accuracy was 

not validated against PhysioNet states due to simulated EEG integration; however, prior studies report 83.3% accuracy 

for comparable setups (Nechyporenko et al., 2024). Emotion-Aware AI reduced task load and dual-tasking penalties, 

analyzing individual adaptation characteristics for outcome relationships (Vine et al., 2021). 

 

RESULTS 

 

Primary Outcome: Emotional State Distribution 

 

The simulation with 100 agents over 30,000 steps showed improvements in emotional state management with 

Emotion-Aware AI compared to Emotion-Agnostic. Operators in the Emotion-Aware condition spent 40.6% of their 

time in Calm (M = 40.6, SD = 7.7), a 22.9% increase from the Emotion-Agnostic condition (33.1% (M = 33.1, SD = 

6.8). High-risk Overloaded states decreased significantly, with Emotion-Agnostic showing 33.3% in Overloaded states 

(M = 33.3, SD = 5.9) compared to 26.2% (M = 26.2, SD = 6.2) in the Emotion-Aware condition, marking a 21.4% 

reduction. Stressed states were similar, at 33.2% (M = 33.2, SD = 2.0) for Emotion-Aware and 33.7% (M = 33.7, SD 

= 1.6) for Emotion-Agnostic, indicating regulation to prevent escalation into Overloaded states (see Figure 2). 
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Statistical Significance and Effect Size 

 

A paired-sample t-test confirmed significant differences in Calm state percentages between conditions, t₍99₎ = 25.84, 

p < .001. The effect size was large (Cohen’s d = 1.04), indicating substantial practical significance for defense 

applications where maintaining cognitive stability is critical. This large effect size suggests that Emotion-Aware AI 

interventions consistently improve outcomes across diverse operator profiles, supporting generalizability to high-

stress operational contexts. 

 

Performance Metrics and Cognitive Function 

 

The Emotion-Aware AI condition showed improvements in cognitive performance metrics over the Emotion-Agnostic 

condition. Reaction times were quicker for Emotion-Aware AI (M = 345.05 ms, SD = 43.5) compared to Emotion-

Agnostic AI (M = 352.62 ms, SD = 43.5), an improvement of 7.57 ms from a baseline Calm reaction time of 300 ms, 

reflecting reduced stress penalties. Visual accuracy was slightly better for Emotion-Aware AI (M = 0.99, SD = 0.005) 

than Emotion-Agnostic AI (M = 0.98, SD = 0.005), sustaining performance close to the baseline 0.99 under stress, 

with variability influenced by archetype resilience levels. Reasoning scores improved marginally for Emotion-Aware 

AI (M = 0.95, SD = 0.005) compared to Emotion-Agnostic AI (M = 0.94, SD = 0.005), nearing the baseline 0.96, with 

differences across archetypes highlighting adaptive benefits. These consistent enhancements, driven by dynamic 

workload adjustments, demonstrate the advantages of adaptive workload management in preserving cognitive function 

during high-stress scenarios, potentially enhancing target acquisition and decision-making under fire in defense 

contexts (see Figure 3).  

 

Transition Matrix Analysis and State Dynamics 

 

State transition probabilities revealed distinct patterns explaining the Emotion-Aware AI’s effectiveness (Figure 2).  

 

For the Emotion-Aware condition 

• From Calm: 59.1% remained Calm, 33.3% transitioned to Stressed, 7.6% to Overloaded. 

• From Stressed: 26.5% recovered to Calm, 34.5% remained Stressed, 38.9% escalated to Overloaded. 

• From Overloaded: 29.7% recovered to Calm, 32.4% transitioned to Stressed, 37.9% remained Overloaded. 

 

For the Emotion-Agnostic condition 

• From Calm: 52.8% remained Calm, 38.7% transitioned to Stressed, 8.5% to Overloaded. 

• From Stressed: 21.9% recovered to Calm, 36.5% remained Stressed, 41.6% escalated to Overloaded. 

• From Overloaded: 24.2% recovered to Calm, 26.4% transitioned to Stressed, 49.4% remained Overloaded. 

 

These patterns indicate that Emotion-Aware AI enhances state stability (e.g., 59.1% vs. 52.8% Calm retention) and 

recovery rates (e.g., 26.5% vs. 21.9% from Stressed to Calm), demonstrating proactive stress mitigation. 

 

Adaptive Mechanisms, Reliability, and Long-term Outcomes 

 

The Emotion-Aware AI’s adaptive mechanisms, validated by dynamic task load (0.05/0.08 × [adaptation compliance 

× adaptation learning rate] for Stressed/Overloaded) and dual-tasking penalty reductions (0.02/0.04 × adaptation 

strength), enhance cognitive resilience through a closed-loop feedback system (Haque et al., 2024). The SVM 

classifier, which has not been validated against PhysioNet due to the use of simulated EEG data, relies on an 83.3% 

accuracy proxy from similar HRV/GSR setups (Nechyporenko et al., 2024), ensuring balanced state predictions that 

clarify observed distribution differences. Steady-state analysis (see Figure 3) shows Emotion-Aware AI sustains 

40.6% Calm, 33.2% Stressed, and 26.2% Overloaded states, compared to 33.1% Calm, 33.7% Stressed, and 33.3% 

Overloaded for Emotion-Agnostic AI, reducing high-risk Overloaded conditions and promoting long-term mission 

success. 
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Figure 2. Comparative Analysis of State Transition Probabilities in Human-AI Teaming Conditions 

 
Figure 3. State Distributions and Workload Metrics Comparison 
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DISCUSSION 

 

Emotion-aware AI significantly enhanced human-AI performance in high-stress situations, achieving a 22.9% 

improvement in calm state maintenance (40.6% vs. 33.1%) and a 21.4% reduction in overloaded states (26.2% vs. 

33.3%). The large effect size (Cohen's d = 1.04) demonstrates substantial benefits across diverse operators, addressing 

gaps in human-AI teaming frameworks that often view operators as static rather than dynamic partners enhanced 

through intelligent adaptation (Khare et al., 2024; Vistorte et al., 2024). 

 

Mechanisms and Performance Impact 

 

Analysis of transition matrix shows emotion-aware AI acts as a safety net, boosting calm state stability (59.1% vs. 

52.8%) and stress recovery (26.5% vs. 21.9%). It outperforms reactive strategies by proactively enhancing 

performance, including a 7.57 ms faster reaction time (from 345.05 ms to 337.48 ms), which is crucial in defense 

where milliseconds matter. Visual accuracy (0.99 vs. 0.98) and reasoning (0.95 vs. 0.94) also improved. The system 

adjusts task load (reductions of 0.05-0.08) and dual-task penalties (0.02-0.04), conserving resources during long 

operations. 

 

Operational and Health Implications 

 

Steady-state analysis revealed that operators spent more time in optimal cognitive states (40.6% vs. 33.1% in Calm), 

thereby fostering sustained resilience and cognitive well-being. This transition to resilience-focused operations has a 

positive impact on personnel retention, training effectiveness, and long-term psychological well-being. By managing 

cognitive load effectively, emotion-aware AI may help alleviate stress-related psychological injuries, including PTSD 

and cognitive decline, given the correlation between operational stress and psychological casualties (Price et al., 2024). 

 

Methodological Contributions 

 

This study establishes new standards for digital twin development by incorporating real PhysioNet physiological data, 

improving simulation accuracy despite challenges in adapting automotive stress data to defense applications. The 

discrete-event simulation framework linking Markov state transitions with preprocessed physiological data connects 

affective computing, human factors engineering, and defense systems design. The closed-loop feedback mechanism, 

where AI modifications influence physiological responses to inform future adjustments, establishes groundwork for 

adaptive human-AI systems that shift from static optimization to dynamic co-adaptation. 

 

Design Guidelines and Implementation 

 

Future emotion-aware systems should incorporate real-time physiological monitoring to identify stress states before 

performance decline, adaptive task allocation to prevent stress escalation while preserving human agency, and 

multimodal integration of physiological signals for reliable state estimation. The enhanced state stability and recovery 

patterns suggest that graduated stress responses manage cognitive load more effectively than binary interventions. 

From a human factors perspective, successful implementation requires maintaining operator trust through transparent 

feedback about detected stress states and AI adaptations, while ensuring operators retain override capabilities to 

preserve situational control and prevent automation dependency. Training protocols should familiarize personnel with 

the system's stress detection capabilities and adaptation strategies to optimize human-AI collaboration. Technological 

integration appears feasible with current physiological monitoring technologies. Merging existing wearable sensors 

with mission systems could provide operational benefits without requiring significant technological advances, with a 

modular design allowing gradual adoption as technologies evolve. 

 

Limitations and Future Directions 

 

The study utilizes automotive stress data as a proxy for defense operations, revealing valuable physiological patterns 

that require validation in real military contexts for generalizability. The simulated EEG data, due to dataset limitations, 

pose a constraint that future research must address by integrating comprehensive neurophysiological monitoring, such 

as real EEG or fNIRS, to improve cognitive state detection accuracy. 
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The SVM classifier’s accuracy wasn't directly validated since simulated EEG data was used. While prior research 

indicates an 83.3% accuracy for similar setups (Nechyporenko et al., 2024), future studies should investigate advanced 

machine-learning methods and additional physiological modalities to enhance the reliability of stress prediction. 

Validation studies should examine the effectiveness of emotion-aware AI across different scales, from individuals to 

teams and organizations, to clarify how individual cognitive optimization affects collective performance. Longitudinal 

research could explore the long-term impact of emotion-aware AI on operator development and well-being, ensuring 

that technology enhances rather than diminishes human capabilities. 

 

CONCLUSION 

 

This research establishes emotion-aware AI as a significant advancement for human-AI collaborative systems in high-

stress environments. The digital twin simulation, supported by the integration of preprocessed physiological data, 

demonstrates that AI systems capable of monitoring and responding to human emotional states can significantly 

improve performance and resilience outcomes. 

 

The 22.9% improvement in calm state maintenance, 21.4% reduction in high-risk Overloaded states, and enhanced 

cognitive performance metrics (e.g., 7.57 ms reaction time improvement, visual accuracy of 0.99 vs. 0.98, reasoning 

score of 0.95 vs. 0.94) provide compelling evidence that emotion-aware AI represents a substantial step toward human-

centered AI systems that optimize collaborative potential. For defense applications, these findings suggest that 

emotion-aware AI could enhance mission effectiveness while protecting personnel well-being, addressing the dual 

imperatives of operational success and force protection. The steady-state analysis, showing sustained optimal 

cognitive states (40.6% vs. 33.1% Calm), indicates enduring rather than temporary benefits. 

The methodological innovations demonstrated here, particularly the integration of preprocessed physiological data 

into digital twin frameworks and the development of closed-loop adaptation mechanisms, set new standards for 

human-AI system design and evaluation. These approaches provide a foundation for developing increasingly 

sophisticated emotion-aware technologies that adapt to the complex, dynamic requirements of real-world operational 

environments. As human-AI teaming becomes increasingly central to organizational effectiveness across domains, the 

principles and technologies demonstrated in this research offer a pathway toward truly symbiotic human-AI 

collaboration, intelligently supporting and amplifying human potential through emotionally intelligent artificial 

partners. 
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