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ABSTRACT 

 

While attrition in military academy training is often attributed to injuries and poor fitness, emotional fatigue and 

cognitive overload are equally impactful, yet remain underexplored. Current attrition prediction methods are 

retrospective and lack real-time physiological insights. This study demonstrates a digital twin simulation framework 

integrating physiological data, particularly heart rate variability (HRV) via RMSSD, to proactively predict dropout 

risk by modeling trainees' affective states (stable, fatigued, burnout). A Markovian state transition model with adaptive 

training interventions was applied to 100 virtual trainees, split into a control group following standard protocols (n = 

50) and an intervention group with adjusted training loads based on real-time HRV thresholds (n = 50). Simulations 

covered 50,000 discrete time steps with monitoring of affective states. Results showed significant burnout reductions 

in the intervention group, with 63.03% time in stable states and only 10.14% in burnout, compared to the control 

group's 21.16% stable and 36.69% burnout states, marking a 72.4% reduction in burnout. Dropout risk, defined as 

spending ≥30% of time in burnout, was eliminated in the intervention group (0% vs. 60.98% control). Validation with 

36 PhysioNet participants confirmed the model's robustness, converging within 0.1% of synthetic results on key 

metrics. Unlike traditional retrospective measures, this digital twin framework provides real-time assessments of 

trainee stress states for timely interventions. This adaptive modeling approach provides a validated framework for 

managing emotional fatigue and reducing attrition in high-stress military training via HRV-guided protocol.    
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INTRODUCTION   

 

Military training environments, such as academies, demand peak physical and mental performance under extreme 

stressors like sleep deprivation, prolonged exertion, and high cognitive loads. These conditions elevate dropout risk, 

traditionally linked to physical injuries but increasingly tied to emotional fatigue (burnout) and cognitive overload 

(Lieberman et al., 2006). Burnout, characterized by emotional exhaustion and reduced effectiveness, compromises 

mission readiness and increases training costs (Nindl et al., 2018). Studies show military stressors reduce resilience, 

degrade executive function, and drive voluntary attrition, yet affective factors (mood, mental fatigue) remain 

underexplored as predictors (Shaffer & Ginsberg, 2017). 

 

Real-time monitoring of trainees' affective states is challenging, but heart rate variability (HRV), specifically RMSSD, 

provides a non-invasive proxy for stress, fatigue, and recovery. HRV reflects autonomic nervous system balance, with 

suppressed RMSSD indicating stress or fatigue and higher values signaling recovery (Lennartsson et al., 2016). In 

military contexts, RMSSD drops significantly during intense training, correlating with burnout risk (Nindl et al., 

2018). HRV monitoring can thus serve as an early warning system for excessive stress, enabling timely interventions 

to prevent dropout. HRV-guided adaptive training, validated in sports science, tailors intensity based on daily RMSSD, 

improving performance and reducing fatigue compared to fixed schedules (Morinaga & Takai, 2024). For example, 

cyclists adjusting workouts via HRV feedback achieved greater fitness gains than those on rigid plans (Javaloyes et 

al., 2019). Such approaches inform military training, where adaptive policies may optimize load to sustain 

performance and minimize burnout. 

 

This study examines a digital twin simulation framework (Rasheed et al., 2020) to predict and prevent dropout in 

military academies. Each twin, a software agent, mirrors a trainee's physiological state using RMSSD as the primary 

input to estimate affective states: Stable (optimal), Fatigued (accumulating stress), or Burnout (high dropout risk), 

adapted from established burnout classification systems (Maslach & Leiter, 2016). A Markov model simulates state 

transitions under training loads and recovery (Sonnenberg & Beck, 1993), employing RMSSD thresholds derived 

from clinical research (<4.3 for burnout, 4.3-5.8 for fatigued, >5.8 for stable) (Lennartsson et al., 2016). An adaptive 

training policy adjusts intensity based on RMSSD, aiming to reduce burnout occurrence. The model integrates 

synthetic HRV data with 36 PhysioNet participants (Goldberger et al., 2000) to assess early fatigue and burnout states 

as dropout predictors. Results from the present study demonstrate a 72.4% reduction in burnout rates and complete 

elimination of dropout risk in the intervention group. By utilizing HRV-based adaptive interventions, this framework 

provides a methodological approach to optimize training intensity, reduce attrition, and support operational readiness. 

  

RELATED WORK  

 

Heart rate variability, especially RMSSD, is a validated biomarker for stress and fatigue in military training, reflecting 

autonomic nervous system balance and providing insights into physiological states (Shaffer & Ginsberg, 2017). Lower 

RMSSD indicates sympathetic activation or reduced parasympathetic tone, common in high-stress situations during 

training (Lennartsson et al., 2016). This marker is valuable in military settings, where chronic stress correlates with 

decreased HRV and early burnout risk, impacting performance and readiness (Nindl et al., 2018). RMSSD captures 

parasympathetic activity, making it sensitive to recovery and stress buildup. Values below 16 ms indicate significant 

stress, above 50 ms suggest good recovery (Shaffer et al., 2014). Studies show RMSSD drops during sleep deprivation 
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and exertion, correlating with stress and fatigue (Lieberman et al., 2006). In special forces training, sustained low 

RMSSD predicts performance decline and injury risk, supporting intervention timing (Thayer & Lane, 2009). HRV-

guided training protocols have improved performance and reduced fatigue, with military programs using HRV to 

prevent burnout more effectively than traditional methods (Morinaga & Takai, 2024; Nindl et al., 2018). Athletes 

using HRV protocols gain 15-20% performance benefits and lower overtraining risk (Javaloyes et al., 2019). Digital 

twin technology now models complex human systems in real-time, predicting outcomes and optimizing treatments 

(Rasheed et al., 2020; Björnsson et al., 2018). In military training, digital twins for predicting attrition are limited. 

Markov models provide a foundation for modeling health state transitions, useful in healthcare for disease progression 

and recovery (Sonnenberg & Beck, 1993; Briggs & Sculpher, 1998). Traditional dropout prediction relies on static 

data at entry (Niebuhr et al., 2013), but real-time physiological monitoring may improve early detection. Despite the 

success of HRV-guided training, systematic use in military training is rare, and predictive models combining 

continuous monitoring with proactive interventions are lacking (Plews et al., 2013; Beck & Pauker, 1983). Developing 

integrated digital twin frameworks with HRV and Markov models has potential to improve dropout prediction and 

individualized interventions, shifting from reactive to proactive management in high-stress training environments. 

 

METHODOLOGY  

  

Digital Twin Model Structure  

 

To capture population heterogeneity, agents were stratified by stress resilience using baseline RMSSD values, with 

scores below 5.94 marked high risk. The digital twin architecture employed a multi-agent simulation design where 

each virtual trainee represented an individual software agent mirroring real trainee physiological and demographic 

characteristics. High-risk agents utilized separate Markov matrices, characterized by higher burnout and lower 

recovery rates, reflecting stress tolerance differences in military training populations. The model design incorporated 

demographic realism through stratified sampling from military population distributions. Demographic factors like sex, 

age (18-35), BMI, activity level, and nicotine use influenced HRV baselines and transition probabilities based on 

established physiological links (Thayer & Lane, 2009). Baseline RMSSD calculations followed a systematic design: 

sex differences provided males with higher baseline HRV (+0.2 offset), age imposed incremental penalties (-0.05 per 

year after 18), and activity level adjustments scaled physiological capacity (+0.5 for high, +0.2 for moderate, none for 

low activity). Lifestyle factors including BMI and nicotine use added evidence-based penalties reflecting their 

documented effects on autonomic function. Individual variation was modeled through Gaussian noise distribution 

(SD=0.3) to represent genetic and environmental HRV differences, ensuring realistic population heterogeneity within 

the simulation framework. The design maintained scientific rigor by grounding all parameters in published 

physiological research while enabling scalable agent-based modeling for large-scale training scenarios. This 

architecture supported both synthetic data generation and real-world validation through integration with empirical 

datasets. See Figure 1. 

 
Figure 1. Digital Twin Framework for Military Training Dropout Prevention  
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Individual Differences and Population Modeling   

To capture population heterogeneity, agents were stratified by stress resilience based on baseline RMSSD, with scores 

below 5.94 labeled high risk. High-risk agents utilized separate Markov matrices, characterized by higher burnout 

susceptibility and lower recovery rates, which reflected individual differences in stress tolerance during military 

training. Demographics, including sex, age (18-35), BMI, activity level, and nicotine use, influenced baseline HRV 

and transition probabilities based on physiological data. The baseline RMSSD considered sex (higher HRV in males), 

age (-0.05 per year above 18), activity (+0.5 high, +0.2 moderate, none low), BMI, and nicotine penalties, plus 

Gaussian noise (SD=0.3) for individual variation due to genetics and environment.  

 Markov State Transition Model   

 

The affective state transitions follow a discrete-time Markov process with state-dependent transition probabilities. 

Base transition matrices were established for standard population agents. From the Stable state, agents had a 0.65 

probability of remaining Stable, 0.30 probability of transitioning to Fatigued, and 0.05 probability of transitioning to 

Burnout. From the Fatigued state, agents had a 0.15 probability of recovering to the Stable state, a 0.65 probability of 

remaining in the Fatigued state, and a 0.20 probability of progressing to Burnout. From the Burnout state, agents had 

a 0.10 probability of recovering to Stable, 0.30 probability of improving fatigue, and 0.60 probability of remaining in 

burnout. High-risk agents utilized modified transition matrices with reduced stress tolerance. From the Stable state, 

they had a 0.60 probability of staying Stable, 0.35 probability of transitioning to Fatigued, and 0.05 probability of 

transitioning to Burnout. From the Fatigued state, they had a 0.10 probability of recovering to Stable, a 0.50 probability 

of remaining Fatigued, and a 0.40 probability of progressing to Burnout. From the Burnout state, the probabilities 

were 0.05 for recovering to a Stable state, 0.30 for improving to a Fatigued state, and 0.65 for staying in the Burnout 

state (see Table 1).  

 

Table 1. Heart Rate Variability Parameters and Demographic Factors in Simulation Model  

 

Parameter Value/Range Role in Simulation 

HRV Stable threshold > 5.8 Indicates stable recovery state 

HRV Fatigued threshold 4.3–5.8 Indicates fatigued intermediate state 

HRV Burnout threshold < 4.3 Triggers burnout high-risk state; initiates intervention 

Sex 
~70% male; males +0.2 HRV 

offset 
Males start with slightly higher baseline HRV 

Age 18–35 years (Mdn = 24) 
Older age correlates with lower HRV 

(faster fatigue) 

BMI 19–30 kg/m² Higher BMI associated with lower HRV (added strain) 

Physical activity level 
Low/Moderate/High 

(self-reported) 

High fitness increases HRV, 

faster recovery 

Nicotine use Yes (~20%) or No Smokers have chronically lower HRV (penalized baseline) 

Stress resilience profile High Risk vs. Standard Risk High risk predisposes longer fatigue periods 

 

EXPERIMENTAL DESIGN  

 

Synthetic Simulation Phase 

The study generated 100 synthetic trainee agents with demographic characteristics sampled from military population 

distributions. Agents were randomly assigned to either a control group (n = 50; standard training protocol) or an 

intervention group (n = 50; HRV–guided adaptive training). The adaptive policy triggered rest interventions when the 

RMSSD values fell below 4.3 and reduced-intensity training when RMSSD values were between 4.3 and 5.8. Control 

group agents received no HRV-based interventions and maintained standard training intensity regardless of 
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physiological state. The simulation was executed over 50,000 discrete time steps, representing approximately 14 hours 

of continuous training with a one-second time resolution.  

  

Real Data Simulation Phase  

The study imported demographic and physiological data for 36 participants from the PhysioNet Wearable Stress 

Dataset (Goldberger et al., 2000), representing empirical data from high-stress environments. These real participant 

profiles were combined with 64 additional synthetic agents to maintain the 100-agent sample size, repeating the control 

versus intervention experimental conditions. This hybrid approach enabled validation of synthetic modeling against 

real physiological responses while maintaining statistical power.  

  

HRV-Based Adaptive Training Protocol   

 

The intervention group implemented a real-time adaptive training system based on RMSSD thresholds. When RMSSD 

values fell below 4.3, the system triggered mandatory rest periods with a +0.3 RMSSD recovery boost, reflecting 

physiological recovery from complete training cessation. When RMSSD values ranged between 4.3 and 5.8, the 

system implemented low-intensity training protocols with a +0.15 RMSSD improvement, representing reduced but 

continued training load. When RMSSD values exceeded 5.8, standard training intensity was maintained without 

intervention. The adaptive protocol was informed by sports science research demonstrating 15-20% performance 

improvements with HRV-guided training compared to fixed intensities (Morinaga & Takai, 2024).   

  

Data Analysis   

 

Primary outcomes included time spent in affective states (stable, fatigued, burnout), transition frequencies, and 

dropout risk. Dropout was defined as spending ≥ 30% of simulation time in Burnout, based on burnout criteria 

(Maslach & Jackson, 1981). Analyses used t-tests for continuous data, chi-square for dropout rates, Cohen's d for 

effect sizes, eta-squared for ANOVA, and Tukey HSD for multiple comparisons. Model validation involved synthetic 

versus real data convergence analysis to ensure simulation accuracy. Recovery was assessed through transition counts 

and durations, measuring time in each state and beneficial transitions (Burnout to Stable, Fatigued to Stable). 

Effectiveness was quantified with relative risk reduction and numbers needed to treat for clinical insights.    

 

Model accuracy was validated via synthetic and real data comparison, with convergence at less than 1% difference in 

outcomes. Sensitivity analyses tested threshold variations (+/- 0.2) and transition probability changes (+/- 10%) on 

key results. The threshold-based method was validated against HRV norms for stress detection in military populations 

(Shaffer et al., 2014).  
 

RESULTS  

  

Synthetic Simulation Results  

 

In the control group, agents spent 21.16% of time steps in the stable state, 42.14% in the fatigued state, and 36.69% 

in the burnout state, with a 60.98% dropout rate (defined as agents exceeding 30% burnout time). The intervention 
group, utilizing HRV-guided adaptive training with rest or low-intensity protocols when RMSSD values fell below 

threshold levels (< 4.3 or 4.3–5.8) achieved 63.03% stable, 26.83% fatigued, and 10.14% burnout states, with a 0% 

dropout rate. Adaptive support was implemented in 19.95% of steps, reducing burnout by 72.4% compared to the 

control group (36.69% to 10.14%).  

 

Statistical analyses confirmed significant group differences. Stable state prevalence was significantly higher in the 

intervention group (t = -33.73, p < .001), while burnout prevalence was significantly lower (t = 16.65, p < .001). 

ANOVA results further supported these findings: for stable states, F = 1142.07, p < .001, η² = .921; and for burnout 

states, F = 378.41, p < .001, η² = .794. The chi-square test for dropout risk was also significant, χ² (1) = 44.77, p < 

.001. See Figure 2.   

 

Recovery dynamics analysis showed the control group achieved 49,124 recovery transitions (burnout to stable) with 

an average recovery time of 2.64 steps. In contrast, the intervention group completed 67,692 recovery transitions with 

a significantly faster recovery time of 1.36 steps. The intervention group also spent longer durations in the stable state 

(4.49 steps) compared to the control group (2.74 steps), indicating improved state stability.  Demographic analyses 
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revealed that female agents spent 48.15% of their time in the stable state and 19.60% in burnout, while male agents 

spent 43.67% in the stable state and 22.40% in burnout. Agents with high-stress risk profiles demonstrated similar 

improvements to those with standard risk profiles, indicating the effectiveness of the intervention across risk 

categories. 

 
 

Figure 2. ANOVA Results: Intervention Effects on Affective States. F-statistics and effect sizes (η²) demonstrate 

significant intervention effects for both stable and burnout states across synthetic and real data conditions  

Real Data Simulation Results  

The data phase included 36 PhysioNet participants and 64 synthetic agents, with consistent results. The control group 

had 17.71% stable, 39.96% fatigued, and 42.33% burnout states, with 84.62% dropout. The intervention group had 

63.15% stable, 26.76% fatigued, and 10.08% burnout states, with 0% dropout. Adaptive support, used in 20.20% of 

steps, reduced burnout by 76.2% (42.33% to 10.08%). Statistical analyses matched synthetic phase results. Stable state 

prevalence was higher (t = -38.08, p < .001), burnout lower (t = 28.91, p < .001). ANOVA showed large effects for 

stable states (F=1608.29, p<.001, η²=.943) and burnout (F=514.54, p<.001, η²=.840). Dropout differences were 

significant (χ²=62.44, p<.001). Recovery analysis found 73,813 recoveries in control (avg 2.73 steps), 39,729 in 

intervention (avg 1.36 steps), with longer stable durations in the intervention group (4.50 vs. 2.64 steps). 

Demographics showed female agents had 44.86% stable and 21.94% burnout states, males 42.40% stable and 23.25% 

burnout, indicating modest sex differences.  
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Synthetic versus Real Data Comparison  

 

Cross-phase comparisons showed strong model validation with minimal differences between synthetic and real data. 

In the control group, stable states differed by 3.45% (21.16% vs.17.71%), and burnout states by -5.64% (36.69% vs. 

42.33%). Intervention group differences were negligible: stable states by -0.12% (63.03% vs. 63.15%), and burnout 

by 0.06% (10.14% vs. 10.08%). The almost identical results (< 0.1% difference) validate the model’s accuracy and 

robustness, even with hybrid data. See Figures 3 and 4.    

 

 
Figure 3. HRV State Distribution: Intervention Impact Comparison 

 

 
Figure 4. Chi-Square Test Results 
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Clinical and Operational Significance  

 

The simulation demonstrated that HRV-guided adaptive training reduced burnout by 72.4% in synthetic data and 

76.2% in real data, significantly exceeding expectations. It completely eliminated dropout risk in the intervention 

groups (0% vs. 60.98% and 84.62% in the controls), offering a significant clinical benefit. Relative risk calculations 

reveal that the intervention prevents dropout in approximately 3 out of 5 at-risk trainees in synthetic conditions and 4 

out of 5 in real data. The Number Needed to Treat (NNT) indicates that treating 1.6 trainees prevents one dropout, 

showing high efficiency. Effectiveness was consistent across demographic subgroups and risk profiles, suggesting 

broad applicability. The average intervention accounts for about 20% of training time, making it feasible without 

major disruptions. 

 

 
Figure 5. T-test Results: Effect Magnitude Comparison Between Synthetic and Real Data 

 

DISCUSSION  

Broader Impacts Beyond Military Applications 

The HRV-guided digital twin framework demonstrates significant potential for adaptation across diverse high-stress 

training and performance contexts beyond military applications. The fundamental principles of real-time physiological 

monitoring, adaptive intervention protocols, and predictive burnout modeling are directly transferable to multiple 

domains where stress management and performance optimization are critical. 

 

Healthcare and Medical Training 

Medical training programs face high burnout and attrition. The 72.4% burnout reduction in this study shows HRV-

based monitoring could boost retention, where burnout often exceeds 50%. Implementing this in simulation centers 

may optimize training, uphold competence, and cut the $4.6 billion yearly cost of physician turnover in the U.S. 

 

Corporate and Industrial Applications 

High-stress corporate environments, particularly in the finance, technology, and consulting sectors, experience 

substantial productivity losses due to employee burnout and high turnover rates. The framework's ability to provide 

early warning indicators and individualized stress management protocols could transform corporate wellness programs 

and professional development initiatives. Organizations implementing such systems could reduce turnover costs while 

improving employee performance and satisfaction, with applications extending to executive training programs, sales 

teams, and customer service operations. 
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Educational and Academic Institutions 

Universities and professional schools face increasing concerns about student mental health and academic attrition, 

particularly in demanding programs such as engineering, pre-medical tracks, and graduate studies. The digital twin 

approach could enable academic institutions to identify at-risk students early and implement targeted support 

interventions, potentially improving graduation rates and reducing the psychological toll of intensive academic 

programs. The framework's real-time monitoring capabilities align well with emerging trends in educational 

technology and personalized learning approaches. 

 

Emergency Services and Public Safety 

Police academies, firefighter training programs, and emergency medical services face similar challenges in preparing 

personnel for high-stress operational environments. The validation of this framework across both synthetic and real-

world data suggests strong potential for adaptation to these contexts, where training effectiveness directly impacts 

public safety outcomes. The ability to maintain training rigor while reducing dropout risk could enhance workforce 

readiness in critical public service sectors. 

 

Research and Development Applications 

This framework advances digital health and precision medicine by integrating wearable sensor data with predictive 

modeling, supporting future personalized stress management studies. Researchers could adapt the Markovian 

approach to explore stress responses across populations, deepening understanding of human performance under 

pressure. Its modular design allows customization for different organizational needs while retaining core functions, 

making it a versatile platform for stress management and performance enhancement across sectors. This marks a 

significant step in human-centered system design and physiological monitoring. 

 

Limitations  

 

This study has several limitations. First, reliance on HRV (RMSSD) as the sole physiological input oversimplifies 

stress psychophysiology, missing hormonal, neural, and cognitive factors such as cortisol and EEG signals. Future 

models should incorporate additional data streams for more comprehensive stress assessment. Second, reducing 

emotional states to three discrete categories (Stable, Fatigued, Burnout) may omit nuances such as frustration versus 

exhaustion, warranting a refined or multidimensional state model. Third, the validation sample of 36 PhysioNet 

participants and constraints of the real-world data, including intermittent recordings necessitating synthetic HRV 

supplementation, limit generalizability. The control group dropout rates of 60.98% in synthetic and 84.62% in real 

data conditions, while realistic for high-stress training, suggest the need for prospective validation with real-time 

wearable HRV monitoring. Fourth, the adaptive training policy has been tested in simulation only, and real trainees 

may respond differently to interventions. External influences such as unit cohesion, leadership styles, and motivational 

factors were not modeled, potentially overestimating the impact of physiological tailoring alone. Finally, practical 

implementation challenges including wearable device compliance, data privacy concerns, and trainer trust in 

algorithmic recommendations require careful consideration for real-world adoption in military training environments.  

  

Implications For Deployment  

 

This study presents a scalable early warning system to identify at-risk trainees, achieving 63.03% stability in synthetic 

conditions and 63.15% in real data validation, with corresponding burnout reductions of 72.4% and 76.2%, 

respectively. The framework prevents dropout in military and high-stress educational settings through personalized 

training guided by physiological markers, enhancing trainee health, retention, and operational readiness while 

reducing retraining costs associated with attrition. The digital twin approach enables proactive intervention before 

performance degradation becomes irreversible, shifting from reactive to preventive training management. 

Implementation of such systems could transform military training paradigms by providing commanders with real-time 

insights into trainee physiological status and evidence-based recommendations for training load adjustments. Beyond 

military applications, addressing data privacy concerns and establishing trainer confidence in algorithmic 

recommendations could enable adoption in healthcare training, emergency services, and corporate environments with 

high burnout risks. The framework's modular design supports customization across diverse high-stress training 

contexts while maintaining core predictive capabilities.   
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Future Directions  

 

Future research should include real-time HRV data from wearables in military training to validate the digital twin's 

predictive power and calibrate state transitions. A pilot at a military academy could evaluate dropout forecasts, false 

alarms, and optimize interventions. Expanding the model with multimodal signals like galvanic skin response, sleep 

metrics, and psychosocial factors using advanced machine learning would improve predictions and reduce reliance on 

single parameters. Building on a 72.4% burnout reduction in synthetic conditions and 76.2% in real data, a randomized 

controlled trial should test the adaptive training in live military settings, measuring state prevalence, dropout rates, 

performance, injuries, and trainee well-being to assess effectiveness and barriers. Scaling to other threats like law 

enforcement and emergency services needs context-specific customization while preserving the core digital twin. 

Cross-domain validation would show the generalizability of HRV-guided adaptive training beyond the military. 

Ethical issues and user acceptance require careful study. Incorporating explainable AI would build trust through 

transparent recommendations, and human factors studies should evaluate user acceptance, perceived utility, and long-

term adherence to tech-based training.  

 

CONCLUSION  

 

This study used a simulation-based digital twin to predict training dropout risk via HRV-informed affect tracking. 

Simulating responses to stress, fatigue, and recovery with an adaptive policy, the model greatly reduced burnout. The 

Control group had 21.16% Stable and 36.69% Burnout states with 60.98% dropout risk, while the Intervention group 

reached 63.03% Stable, 10.14% Burnout, and 0% dropout, reducing burnout by 72.4%. Validation with 36 PhysioNet 

participants showed similar results, with Control at 17.71% Stable, 42.33% Burnout, and 84.62% dropout risk, and 

Intervention at 63.15% Stable, 10.08% Burnout, and 0%. This framework offers a validated approach for personalized 

military training, improving resilience, retention, and readiness. The clear reduction in burnout indicates HRV-based 

adaptive training can lower dropout risk without sacrificing effectiveness. Future work should add multimodal signals, 

test in live settings, and use explainable AI to improve accuracy and trust, advancing trainee well-being and force 

readiness.  
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