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ABSTRACT 
 

Chronic stress is a growing concern among college students, linked to long-term psychological and physiological 

harm. Yet, existing assessment tools rely heavily on self-reporting, which is prone to bias and fails to capture real-

time, fluctuating the nature of stress. To address this gap, the present study proposes a digital twin framework that 

models chronic stress progression by incorporating trauma history, adverse childhood experiences (ACEs), chronic 

health conditions, genetic vulnerabilities, emotion regulation, gender identity, and environmental stressors. Using 

Python-based agent-based and discrete-event simulation methods, 100 virtual agents were created and evenly 

distributed across four groups: Control (n = 25), Cognitive Behavioral Therapy (CBT, n = 25), Mindfulness (n = 25), 

and Breathing Techniques (n = 25). Simulations ran for 30,000-time steps (~2.5 years), producing 3,000,000 total data 

points. The model tracked transitions across varying stress states and evaluated the effectiveness of interventions. All 

three strategies significantly reduced time spent in high-stress states compared to the Control group. In the static 

model, dropout risk was entirely eliminated for all intervention groups, while the dynamic model showed CBT 

producing the most stable and sustained reductions in stress severity. Unlike existing retrospective tools, this 

framework is adaptive, allowing personalized, real-time projections of stress risk and intervention outcomes. Though 

challenges remain in integrating biometric data and ensuring ethical deployment, this approach offers a scalable and 

cost-effective tool for proactively managing chronic stress. With further refinement, digital twin systems may 

transform mental health care by simulating intervention outcomes prior to clinical or educational implementation. 
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INTRODUCTION  

 

Chronic stress significantly impacts mental and physical health, yet traditional models often miss their dynamic, real-

time nature (Heron & Smyth, 2010). Digital twin systems, originally developed for manufacturing (Grieves, 2014) 

and now applied in healthcare (Corral-Acero et al., 2020), enable personalized, adaptive stress interventions (Insel, 

2017; Spitzer et al., 2023). Prolonged adversity induces allostatic load and disrupts HPA axis function, impairing 

cognition, emotion regulation, and immunity (McEwen & Stellar, 1993; Lupien et al., 2009; Sapolsky, 2000). 

Wearable devices and heart rate variability (HRV) measures allow continuous autonomic stress monitoring (Thayer 

et al., 2012; Wheat & Larkin, 2010). Meanwhile, JITAIs and digital therapies like CBT and mindfulness demonstrate 

scalable effectiveness (Nahum-Shani et al., 2018; Andersson et al., 2014). Despite data integration and ethical 

challenges, validated digital twins show promise for proactive mental health care (Pappalardo et al., 2020). 

A key gap remains between digital twin theory and practical mental health implementation. Most research assumes 

ideal conditions, complete data, perfect adherence, no technical issues, rarely reflecting real-world complexity. This 

gap is acute in adolescent mental health, where engagement barriers, tech challenges, and variable family support 

complicate interventions. This study addresses the gap via the Enhanced Digital Twin Framework, comparing three 

paradigms: Static Baseline Modeling (fixed protocols), Adaptive Perfect Implementation (ideal data and adherence), 

and Realistic Implementation (accounting for adherence decay, technical barriers, and engagement variability). 

Incorporating multi-source real-world data ensures ecological validity and supports comprehensive clinical evaluation. 

 

RELATED WORK  

 

Adolescent Stress and Anxiety 

 

Adolescent stress and anxiety have surged, driven by academic demands, social media, and disrupted sleep (Anderson 

et al., 2024). Gender differences are particularly pronounced, with females showing higher anxiety rates and distinct 

symptom interaction patterns in technology-mediated contexts (Guo et al., 2025). Chronic stress during adolescence 

impairs emotional regulation and brain development, raising long-term mental health risks (Lupien et al., 2009; 

Sapolsky, 2000; Slopen et al., 2012). Socioeconomic adversity intensifies these effects (Santiago et al., 2011). 

Assessment relies on validated psychological scales like the Perceived Stress Scale (Cohen et al., 1983), alongside 

physiological metrics such as salivary cortisol and HRV, which reflect HPA axis and autonomic system functioning 

(Hellhammer et al., 2009; Thayer et al., 2012). 

 

Behavioral and Psychological Interventions 

 

CBT remains the leading treatment for adolescent anxiety, with strong support for online and mobile formats (Alemdar 

& Karaca, 2025; Andersson et al., 2014). Mobile CBT is especially effective when integrated with behavioral signals 

such as sleep disruption (Andersson et al., 2014). Mindfulness and emotion regulation strategies also reduce anxiety 
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(Rizwari & Kemala, 2022; Compas et al., 2012), while biofeedback and neurofeedback enhance stress awareness and 

self-regulation using HRV or brainwave data (Wheat & Larkin, 2010; Chen et al., 2021; Min et al., 2023). 

 

mHealth tools enable continuous stress monitoring through wearable sensors and smartphone apps (Sano & Picard, 

2013; Philip Schmidt et al., 2018). JITAIs deliver context-sensitive support based on real-time data (Klasnja et al., 

2015; Nahum-Shani et al., 2018), with microrandomized trials serving as a key evaluation method. Self-supervised 

models enhance predictive accuracy for stress detection (Islam & Washington, 2023). 

 

Digital twins are real-time virtual models fed by sensor data, and have expanded from engineering to healthcare 

(Grieves, 2014; Corral-Acero et al., 2020). In mental health, they integrate physiological, behavioral, and mobile data 

to simulate stress responses and guide interventions (Spitzer et al., 2023; Kumi et al., 2024). These systems use digital 

phenotyping to anticipate risk and trigger adaptive interventions like JITAIs (Insel, 2017; Nahum-Shani et al., 2018), 

with in silico trials supporting clinical validation (Pappalardo et al., 2020). Despite promising advances, existing 

mental health digital twins face several limitations: (1) limited real-world validation, (2) oversimplified models that 

ignore implementation complexity, and (3) insufficient attention to adherence and engagement challenges that 

critically impact therapeutic outcomes. 
 

METHODOLOGY 

Digital Twin Framework Architecture  

This study presents a digital twin framework modeling anxiety progression in trauma-exposed adolescents. Adapting 

technology from engineering applications (Grieves, 2014), the framework employs a three-tier agent-based simulation 

comparing static baseline modeling, adaptive learning, and realistic implementation constraints (Marshall & Galea, 

2015). Each tier models psychological profiles as dynamic systems that evolve in response to personal experiences 

and intervention effectiveness, aligning with personalized medicine approaches (Hamburg & Collins, 2010; Ashley, 

2016) (see Figure 1). 

Agent Population and Data Integration 

100 virtual agents were created based on ABCD study distributions (Volkow et al., 2018). Power analysis indicated a 

need for ~25 agents per group to detect effect sizes (Cohen, 1988; Faul et al., 0.5) with 80% power at α = 0.05. Baseline 

anxiety was normally distributed (μ=3.0, σ=2.0), aligning with Child Behavior Checklist scores (Achenbach & 

Rescorla, 2001). ACE scores showed 70% had no adverse experiences, 30% had one or more (Felitti et al., 1998; 

Merrick et al., 2018). Agents' demographics (ages 6-18, 50% female) were randomly assigned U.S. states via Census 

data (U.S. Census Bureau, 2020). Psychological factors included baseline anxiety (Achenbach & Rescorla, 2001), 

emotional regulation (μ=5.0, σ=1.0; Gratz & Roemer, 2004), and gender-specific risk (females OR=1.80, 95% CI: 

1.45-2.23; Guo et al., 2025; Beesdo et al., 2009). Ecological validity was bolstered by state care data (NSCH, 2022), 

developmental factors (Steinberg, 2013; Casey et al., 2019), and sex-specific mental health indicators (Kessler et al., 

2005; Merikangas et al., 2010). WESAD physiological data (Schmidt et al., 2018) provided HRV and EDA stress 

sensitivity markers (Thayer & Lane, 2009; Boucsein, 2012). Intervention groups (Control, CBT, Mindfulness, 

Breathing; 25% each) were randomly assigned per CONSORT guidelines (Moher et al., 2010).Three-Tier  

Simulation Design 

The three-tier approach follows established principles of simulation methodology for evaluating healthcare 

interventions, progressing from simple to complex models to isolate specific effects of innovation (Law & Kelton, 

2000; Eldabi et al., 2007; Brailsford et al., 2009) (see Figure 1). 

Tier 1: Static Baseline Model: - Fixed transition probabilities from clinical literature (Costello et al., 2003; Pine et 

al., 1998). Interventions applied at set intervals: CBT every 7 days (Beck et al., 1979; Kendall & Peterman, 2015), 

mindfulness every 3 days (Kabat-Zinn, 1994; Goyal et al., 2014), breathing every 2 days (Ma et al., 2017; Ritz et al., 

2013). 

Tier 2: Adaptive Digital Twin Model: Four evidence-based innovations: learning mechanisms maintaining 100-step 

anxiety and 50-step state history (Miller, 1956; Cowan, 2001), resilience factors (range 0.5-1.5) adjusting based on 
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anxiety trends (Masten, 2001; Connor & Davidson, 2003), personalized transition probabilities (Schuit et al., 2013; 

Jackson et al., 2016), and intervention optimization based on effectiveness history (Murphy, 2005; Almirall et al., 

2014). 

Tier 3: Realistic Implementation Model: Real-world constraints including adherence decay (1-3% monthly; Baumel 

et al., 2017), technical barriers (3-10% probability; Linardon et al., 2019), life disruptions (Heron & Smyth, 2010), 

and engagement fatigue (Christensen et al., 2009). 

 

 
Figure 1: Digital Twin Framework for Intervention 

State Space and Transition Modeling  

Six anxiety states modeled clinical staging approaches: calm, mild, moderate, severe, recovered, deceased (McGorry 

et al., 2006; Shah et al., 2020). Anxiety thresholds were defined as: Mild (>2.0), Moderate (>4.0), Severe (>7.0) on a 

0-10 scale (Beck et al., 1988; Spitzer et al., 2006). Transition probabilities were personalized using ACE scores (Felitti 

et al., 1998; Hughes et al., 2017), gender effects (+2% moderate state transitions for females; McLean et al., 2011), 

and age-related emotional volatility (increased for ≥12 years; Steinberg, 2013; Ahmed et al., 2015). 
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Intervention Modeling and Evidence Integration 

 

Effect sizes calibrated to meta-analytic findings: CBT (SMD = -1.51, 0.4-point anxiety reduction (Alemdar & Karaca, 

2025), Mindfulness (SMD=-0.91, 0.3-point reduction; Goyal et al., 2014; Khoury et al., 2013), Breathing (SMD=-

1.83, 0.5-point reduction; Rizwari & Kemala, 2022; Ma et al., 2017). 

Adaptive scheduling implemented after 5,000-step learning period (~4 months; Walkup et al., 2008). Highly effective 

interventions (>0.3 reduction; Jacobson & Truax, 1991) increased frequency (minimum 2-day intervals), while less 

effective interventions (<0.1 reduction; Norman et al., 2003) decreased (maximum 14-day intervals). Circadian (0.8-

1.2 range) and social support factors (0.7-1.3 range) modified timing and effectiveness (Hickie et al., 2013; Cohen & 

Wills, 1985). 

 

Environmental Stressor and Engagement Modeling 

Environmental stressors occurred with 20% probability, with individual sensitivity factors (0.5-2.0) determining 

vulnerability (Compas et al., 2001; Grant et al., 2003; Monroe & Simons, 1991). Stress effects added to baseline 

anxiety (μ = 0.2, σ = 0.1), aligned with meta-analytic findings (d = 0.23-0.31; McMahon et al., 2003). 

Engagement levels (1-6 scale) were adapted dynamically: significant improvement (>1.0-point reduction) resulted in 

increased engagement (+0.5), while deterioration (>1.0 increase) led to decreased engagement (-0.3; Jacobson & 

Truax, 1991). Engagement influenced transition probabilities (±5% per unit above baseline; Karver et al., 2006; Chu 

et al., 2004). 

 

Simulation Parameters and Statistical Analysis 

 

Each simulation ran 30,000 steps (~2.5 years daily interactions; Copeland et al., 2014). One step equals 30 minutes of 

waking time (Stone & Shiffman, 1994). ASOLS interval of 1,800 steps triggered quarterly adaptations (American 

Academy of Pediatrics, 2019; March et al., 2004). Primary outcomes: state distribution percentages (Guy, 1976; Shear 

et al., 2001) and dropout risk (>20% time in severe states; Walkup et al., 2008; James et al., 2020). Adaptive metrics 

included resilience growth, intervention frequency adaptation, and anxiety improvement (Collins et al., 2007). 

Statistical analysis used independent t-tests with Welch's correction (Welch, 1947), Cohen's d with bias correction 

(Hedges & Olkin, 1985), one-way ANOVA with Tukey HSD, or Kruskal-Wallis tests with η² effect sizes (Richardson, 

2011). Significance set at α = 0.05. 

Model Validation and Sensitivity Analysis 

Validation employed: epidemiological alignment with ABCD distributions (Volkow et al., 2018; Merikangas et al., 

2010), intervention effect calibration to meta-analyses (Alemdar & Karaca, 2025; Cuijpers et al., 2016), transition 

probabilities from longitudinal studies (Costello et al., 2003; Copeland et al., 2014), and real-world data integration 

(NSCH, 2022). Sensitivity testing assessed ±10% of parameter variations (Briggs et al., 2012; Claxton et al., 2005). 

Results showed stable outcomes (coefficient of variation <15%). Clinical validation tracked prediction accuracy and 

intervention effectiveness errors (Shortliffe & Cimino, 2013; Berner, 2007). Cross-validation achieved r = 0.89 for 

anxiety predictions and r = 0.82 for state transitions, exceeding validation benchmarks (Steyerberg et al., 2001). 

RESULTS 

The digital twin framework successfully completed three parallel simulations across 100 virtual agents over 30,000-

time steps (approximately 2.5 years). Agents were equally distributed across four groups: Control (n = 25), CBT (n 

= 25), Mindfulness (n = 25), and Breathing Techniques (n = 25), generating a total of 3,000,000 observation points 

across all three implementation tiers. 

The static baseline model revealed significant group differences in anxiety outcomes, with all interventions 

substantially outperforming the control condition. The control group demonstrated a 64.00% dropout risk (defined as 

>20% time in severe states) and 38.17% calm state occupancy. In contrast, CBT, Mindfulness, and Breathing groups 

all achieved 0.00% dropout risk and over 66% calm state occupancy: CBT (67.27%), Mindfulness (67.16%), and 

Breathing (66.76%). Severe state exposure was highest in the control group (22.65%) compared to 7.90–8.41% across 

intervention groups. Effect sizes were exceptionally large (Cohen's d > 2.0), reflecting idealized conditions with 
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minimized real-world confounds. For severe state exposure, comparisons with control yielded: CBT (d = 2.629), 

Mindfulness (d = 2.702), and Breathing (d = 2.715). For calm state occupancy versus control: CBT (d = −1.643), 

Mindfulness (d = −2.314), and Breathing (d = −1.742). 

One-way ANOVA confirmed significant between-group differences in calm state occupancy, F(3, 96) = 16.796, p < 

.001, η² = .344, and severe state exposure, F(3, 96) = 63.991, p < .001, η² = .667. Post hoc Tukey HSD tests revealed 

all interventions differed significantly from control (p < .001), with no significant differences among intervention 

types. 

 

Adaptive Model Results: Real-time Learning and Personalization 

 

The adaptive digital twin framework demonstrated significant improvements through real-time personalization, 

particularly benefiting the control group. Dropout risk decreased dramatically from 64.00% to 8.00% (an 87.5% 

reduction), demonstrating the benefits of stress sensitivity modeling and dynamic engagement adaptation even without 

formal therapeutic intervention. 

Intervention responses varied across modalities. Mindfulness remained most effective, maintaining 0.00% dropout 

risk while increasing calm state occupancy to 68.81%. CBT showed a modest increase in dropout risk to 7.69% while 

maintaining calm state occupancy at 67.20%. Breathing techniques showed decreased performance under adaptive 

conditions, with dropout risk increasing to 17.24% and calm state occupancy declining to 62.88%, suggesting 

sensitivity to personalization algorithms. 

Personalized Adaptation Metrics: Anxiety reduction ranged from −6.191 (Control) to −2.796 (CBT). Resilience 

increased in all groups: Control (+0.086), Mindfulness (+0.094), CBT (+0.181), Breathing (+0.186). Intervention 

frequency varied from 1.4 to 5.0 days, with model confidence scores stabilizing at Mindfulness (0.771), CBT (0.752), 

Breathing (0.750), Control (0.671). Group differences lessened with adaptive implementation; calm state differences 

became non-significant: Control vs. CBT, t(48) = −0.067, p = .947, d = −0.019; Control vs. Mindfulness, t(48) = 

−0.531, p = .598, d = −0.159; Control vs. Breathing, t(48) = 1.008, p = .318, d = 0.275. ANOVA showed no significant 

calm state difference, F(3, 96) = 0.779, p = .509, η² = .024. Severe state exposure effects remained but were smaller, 

F(3, 96) = 3.351, p = .022, η² = .095, down from .344–.667 in the static model. 

 

Realistic Implementation Model Results 

 

The realistic implementation model demonstrated intervention resilience under real-world constraints including 

adherence decay, technical barriers, and life disruptions. Most interventions retained substantial effectiveness: CBT 

achieved complete recovery (0.00% dropout, 67.83% calm states), Mindfulness showed minimal degradation (5.00% 

dropout, 65.76% calm), and Breathing techniques showed moderate improvement compared to adaptive conditions 

(13.79% dropout, 63.93% calm). The control group remained stable (8.00% dropout, 62.41% calm). 

Implementation Constraints Impact: Support delivery declined significantly from ideal adaptive conditions: CBT 

(14.29% → 4.17% of scheduled sessions), Mindfulness (33.33% → 6.07%), and Breathing (50.00% → 6.36%). 

Despite reduced delivery rates, the therapeutic effects persisted, demonstrating the robustness of the intervention under 

realistic deployment conditions. 

Adaptation Under Constraints: anxiety reductions were greater under adaptive conditions: Control (−6.185), CBT 

(−6.335), Mindfulness (−7.129), Breathing (−7.360). Resilience growth remained positive but smaller: Control 

(+0.047), CBT (+0.071), Mindfulness (+0.158), Breathing (+0.170). Model confidence was stable: CBT (0.750), 

Mindfulness (0.722), Breathing (0.767), Control (0.682). All interventions showed increased frequency, offsetting 

delivery issues: CBT (3.846 days), Mindfulness (5.000 days), Breathing (4.690 days). Statistical analysis revealed 

reduced between-group variance from implementation challenges. Calm state differences were non-significant (F(3, 

96)=0.795, p=.500, η²=.024); severe state differences nearly significant (F(3, 96)=2.695, p=.050, η²=.078). These 

suggest real-world constraints may lessen group variance while boosting individual adaptation. 

 

Model Validation and Performance Metrics 

 

Clinical validation demonstrated acceptable performance, meeting preliminary deployment standards. State transition 

prediction accuracy reached 70.8% across 3,000,000 observations, with balanced false positive and negative rates of 

4.9% each, indicating acceptable performance for consideration in clinical decision support. Convergence analysis 

confirmed stable parameter estimation, with adaptive learning mechanisms demonstrating consistent performance 

across the 30,000-step simulation period. Model confidence scores stabilized by approximately step 20,000 

(equivalent to 14 months) for all intervention groups. 
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Figure 2: Implementation Insights and Real-World Considerations 

Comparative Analysis: Static vs. Adaptive vs. Realistic Implementation 

Comparisons across simulation tiers highlighted the benefits of digital twin adaptations. Control dropout dropped 

dramatically, from 64.00% (static) to 8.00% (adaptive/realistic), suggesting that stress modeling and dynamic 

engagement alone improve outcomes, even without therapy. Intervention responses varied. CBT showed strong 

resilience: dropout was 0.00% (static), rose to 7.69% (adaptive), then returned to 0.00% (realistic), indicating 

robustness under real-world conditions. Breathing techniques were more sensitive, with dropout rising from 0.00% 

(static) to 17.24% (adaptive) and 13.79% (realistic), suggesting a need for stronger personalization. Mindfulness was 

the most stable, maintaining a 0.00% dropout (static/adaptive) and only a slight increase (5.00%) in realistic settings. 

These findings suggest that deployment strategies should be tailored: mindfulness is highly adaptable for real-world 

use, while breathing interventions may require enhanced algorithmic support for sustained impact. 

Figure 3. Anxiety Tier Trajectories 
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DISCUSSION 

 

The digital twin framework effectively modeled trauma-induced anxiety progression in adolescents by integrating 

ACE scores, gender, emotional regulation, and environmental stressors. All interventions (CBT, Mindfulness, 

Breathing) significantly reduced dropout risk and time in severe anxiety states compared to controls. Under static, 

idealized conditions, all intervention groups had 0% dropout rates. 

However, static conditions ignore real-world barriers such as declining adherence and varying treatment 

responsiveness. Adaptive and realistic simulations accounted for these factors, offering more ecologically valid 

assessments. 

CBT showed increased dropout under adaptive conditions (7.69%) but fully recovered under realistic constraints. 

Mindfulness maintained 0% dropout across all scenarios, showing strong stability. Breathing techniques were most 

sensitive, with dropout increasing to 17.24% (adaptive) and remaining elevated to 13.79% (realistic). These 

differences highlight the importance of tailoring interventions to individual engagement patterns and environmental 

variability. Effect sizes decreased across models: static (η² = .344–.667), adaptive (η² = .024–.095), and realistic (η² = 

.024–.078). This trend supports the idea that dynamic, individualized optimization yields more clinically relevant 

insights than static between-group comparisons, particularly when designing interventions based on real-time stress 

response profiles. 

 

Clinical Implementation Implications 

 

Dropout in the control group decreased from 64% (static) to 8% (adaptive/realistic), showing that adaptive 

personalization improves outcomes even without formal therapy. Stress sensitivity modeling and engagement 

adaptation may support scalable mental health interventions. Mindfulness was the most stable across all conditions, 

making it suitable for early digital twin deployment. CBT showed vulnerability under adaptive implementation (7.69% 

dropout) but recovered under realistic conditions (0.00%), indicating the need for tuning. Breathing showed higher 

sensitivity (17.24% adaptive, 13.79% realistic), suggesting a need for stronger personalization and user support. 

 

Technological and Methodological Contributions 

 

This study is the first to compare digital twin effectiveness across static, adaptive, and realistic implementation in 

adolescent mental health. The model used real-world data (state-level care indicators, physiological and psychological 

metrics) and remained computationally efficient. Adaptive learning improved predictive performance: 70.8% state 

transition accuracy and r = 0.94 for anxiety prediction. While these metrics support clinical decision-making, false 

negatives for severe states (4.9%) remain a concern. 

 

Limitations and Future Directions 

 

The model cannot fully capture the complexity of human behavior, social context, or comorbid conditions. Literature-

based treatment parameters limit ecological validity, and the 2.5-year simulation cannot assess long-term effects. Next 

steps include RCT-based pilot testing with at-risk adolescents to evaluate feasibility and clinical utility. Future work 

should address privacy, ethical concerns, therapeutic alliance, and long-term impacts on autonomy and coping. 

Technical priorities include reducing false negatives, modeling peer/social dynamics, and developing human-AI 

decision support systems. 

 

CONCLUSION 

 

Digital twins can support real-time monitoring, risk prediction, and adaptive intervention in adolescent mental health. 

While all interventions performed well under static conditions, adaptive and realistic settings revealed differences in 

resilience. Adaptive personalization led to an 87.5% reduction in dropout risk in the control group. As implementation 

complexity increased, between-group differences decreased, emphasizing individual-level adaptation as a key clinical 

insight. Mindfulness shows the greatest stability, while breathing interventions require enhanced support. These results 

support the clinical potential of digital twins, with future efforts focused on validation, ethical deployment, and 

integration into real-world care. 
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