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ABSTRACT 

 

Children with Autism Spectrum Disorder (ASD) often face significant challenges in language development and social 

communication, which are essential for academic and social success. Despite available therapies, traditional 

interventions often overlook the cognitive and neurological diversity within this population, resulting in limited long-

term impact. With ASD diagnoses increasing and early intervention being critical, scalable and personalized therapy 

models are urgently needed. This concept paper proposes an innovative solution: EEG-driven digital twin models that 

simulate cognitive responses during language tasks. These models will be integrated into artificial intelligence (AI) 

and virtual reality (VR) environments to deliver real-time, personalized language therapy for children with ASD. By 

using real-time brain activity and emotional state data, the system dynamically adjusts therapy content, bridging the 

gap between static interventions and individualized, neuroadaptive treatment.  While EEG, VR, and AI have each 

been applied to ASD interventions, they have not yet been unified within a digital twin framework. This project aims 

to achieve integration. Sample EEG datasets will guide the development of cognitive and emotional models that 

simulate attention, processing speed, and anxiety. These parameters will inform the system’s adaptive features, 

including task pacing, complexity, and sensory inputs. Ultimately, this framework aims to enhance engagement, 

reduce communication anxiety, and provide a foundation for next-generation, brain-responsive therapy systems in 

autism care.  
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INTRODUCTION 

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by difficulties in social 

communication, language development, and repetitive behaviors (Hirota, King, 2023). Children with ASD often 

encounter significant challenges in language and social development, particularly when it comes to communicating or 

engaging in conversations (Knott, Dunlop, A.-W., & Mackay, 2006). Around 10-30% of children with ASD exhibit 

savant skills-exceptional abilities in areas like math, science, engineering, and the arts-often supported by strong 

memory and visual learning (Howlin et al., 2009; Bal, Wilkinson, & Fok, 2021).  

However, most treatment plans are generalized for a large population, which may not be suitable for everyone (Manter 

et al., 2025). Additionally, many current treatment plans lack brain-based data incorporation. Children with ASD need 

individualized care since each has unique needs and special abilities. With the increasing prevalence of ASD diagnoses 

globally and with early intervention proving critical, there is an urgent need for evidence-based, scalable, and adaptive 

therapy solutions tailored to each child’s distinct neurocognitive profile (CDC, 2025).  

Personalized approaches using neurophysiological data like EEG can offer deeper insights into each child’s unique 

profile. Educating parents on these needs is also crucial for fostering better support and development at home. This 

research paper aims to introduce a personalized treatment method for children with ASD using EEG data and AI, 

delivered through VR. It also aims to educate parents on their child's unique neurological and psychological needs to 

enhance support and development. 

Related Work 

 
Since the 1990s, EEG has been explored for early ASD detection, with growing research (Rasool, Ahmad, & Khan, 

2025). Although EEG abnormalities can indicate ASD, they also occur in other neurological conditions, causing high 

false positives. Multimodal approaches combining EEG with behavioral assessments and clinical observations are 

increasingly used (Heunis, Aldous, & Feucht, 2023). Studies show children with ASD tend to have more stable, less 

variable brain activity (Rasool et al., 2025). However, limited datasets, high variability, and age differences challenge 

EEG detection. The recent STEM framework achieved 86.5% accuracy and 85.1% F1 scores in cross-age ASD 

detection using resting-state and emotion-based EEG data, highlighting EEG's potential for early diagnosis (Rasool et 

al., 2025). Additionally, interactive products designed with input from ASD individuals, parents, and therapists help 

children develop social skills and manage anxiety by incorporating sensory sensitivities, using calming sounds, 

visuals, and gentle feedback based on CBT principles to create supportive environments. 

 

The theta/beta ratio (TBR) is an EEG biomarker indicating attention and cognitive load, calculated as the ratio of theta 

(4–7 Hz) to beta (13–30 Hz) power in the frontal regions. Higher TBR indicates poorer attention, mind-wandering, 
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and anxiety. Lower TBR shows better sustained attention and cognitive control. TBR naturally decreases with age, 

reflecting maturation. These metrics will inform real-time adjustment during VR-based therapy to track attention, 

workload, and emotional state in children with ASD.  

 

Gamification and animation boost engagement, making these tools enjoyable and accessible, while real-time feedback 

rewards desirable behaviors and promotes communication skills. Liu and Laie (2023) emphasize the importance of 

gradually introducing new products to prevent anxiety, and studies like Ali et al.’s (2020) show that multi-robot 

therapy improves joint attention, imitation, and social interaction in 86% of children with ASD. Furthermore, digital 

content like educational videos supports speech therapy through evidence-based strategies such as video modeling, 

repetition, simplified language, and sign language. For example, Ms. Rachel’s Songs for Little uses eye contact, clear 

speech, expressive body language, and music to boost social skills. Elements like clapping and picture-based learning 

further enhance engagement. 

 
METHODOLOGY 

 

This section outlines the methodology for developing a neuroadaptive digital twin system that integrates EEG, AI, 

and VR to deliver real-time, personalized language therapy for children with ASD. The system utilizes EEG features 

to track cognitive states, engagement, anxiety, and attention, and adapts VR therapy content in real time based on 

these states. The methodology includes data collection and EEG feature extraction, digital twin architecture, 

reinforcement learning for therapy action selection, and VR-based therapy delivery.  

 

Data and EEG Feature Extraction  

 

EEG data were sourced from three files within the Auditory Evoked Potential EEG-Biometric Dataset, yielding 

training samples with 67% window overlap to ensure robust temporal coverage (Abo Alzahab et al., 2024). Each file, 

originally sampled at 200 Hz, was resampled to 256 Hz and filtered between 1–40 Hz using a finite impulse response 

(FIR) filter to remove noise while preserving critical neural signals (Widmann et al., 2015). Data were segmented into 

10-second windows, following established practices for EEG-based cognitive state modeling (Chikhi et al., 

2022). Eleven features were extracted to capture key neurophysiological markers validated in ASD research (Eldridge 

et al., 2014).  

 

The features included spectral power in delta, theta, alpha, beta, and gamma bands, computed via Welch's method. 

Ratios of alpha and theta, and gamma and theta, assessed mental workload and cognitive binding. Frontal asymmetry 

(F8–T7) gauged emotional regulation, with negative values linked to higher anxiety. Coherence between Cz and other 

channels measured functional connectivity, while spectral entropy quantified signal complexity, related to cognitive 

workload in ASD. All features were standardized with z-score normalization for model stability. This set facilitates 

real-time modeling of engagement, anxiety, and attention, supporting adaptive therapy based on brain activity. The 

features included spectral power in delta, theta, alpha, beta, and gamma bands, computed via Welch's method. 

 

Table 1. EEG Features Extracted for ASD Neuroadaptive Modeling 

 

 

Feature 

Frequency 

Band (Hz) 
Cognitive Role ASD Relevance 

 

Feature 

Theta 4–7 Attention, workload 
Elevated in ASD, 

linked to distractibility 
Theta 

Beta 13–30 
Alertness, 

cognitive control 
Reduced in ASD Beta 

Theta/Beta 

Ratio (TBR) 
— 

Cognitive 

control marker 
Commonly high in ASD 

Theta/Beta Ratio 

(TBR) 

Alpha 8–12 Relaxation Decreases with mental workload Alpha 

Frontal 

Asymmetry 
F8–T7 Emotional regulation 

Negative asymmetry 

linked to anxiety 
Frontal Asymmetry 
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Figure 1. Neuroadaptive Digital Twin Architecture for Personalized ASD Language Therapy 

Digital Twin Architecture  

 

The digital twin model employs a bidirectional LSTM neural network architecture with attention mechanisms to 

predict cognitive states from EEG features. This design was selected for its ability to capture long-term dependencies 

in sequential data (Mi et al., 2024). Input consists of 10-second EEG windows (2560 timesteps × 11 features). The 

model architecture includes three bidirectional LSTM layers with 512, 256, and 128 units respectively, followed by 

an attention layer to model temporal dependencies (Hou et al., 2020). Layer normalization and batch normalization 

are applied for stability, with dropout (0.2-0.3) and L2 regularization (0.01) to mitigate overfitting (Hou et al., 2020). 

Additional dense layers (128 and 64 units, ReLU activation) refine the output. The final layer predicts four cognitive 

states: engagement, efficiency, anxiety, and attention, using sigmoid activation. A custom loss function prioritizes 

engagement, anxiety, and attention (each weighted at 4.0) over efficiency (weighted at 1.5) to align with therapeutic 
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goals (Kerns et al., 2016). This architecture enables the system to make real-time neuroadaptive adjustments in the 

VR environment (Hou et al., 20201).  

 

Reinforcement Learning for Therapy Action Selection  

 

A deep Q-network (DQN) was implemented within the Neuroadaptive Therapy System class to select therapy actions 

based on predicted cognitive states, enabling dynamic adaptations (Mnih et al., 2015). The DQN accepts the four 

predicted cognitive states as input and outputs Q-values for six actions: increasing or decreasing language complexity, 

adding visual supports, reducing sensory stimulation, introducing social interaction, or providing a calming break. 

The network architecture includes two dense layers (32 and 16 units, ReLU activation) and an output layer (6 units, 

linear activation), trained with mean squared error loss and an Adam optimizer (learning rate 0.001). An epsilon-

greedy policy (ϵ decaying from 1.0 to 0.01) balances exploration and exploitation, while a reward function prioritizes 

engagement and attention (weights 2.0), minimizes anxiety (weight -3.0), and promotes efficiency (weight 1.5) 

(Whyte et al., 2015). Experiences are stored in a replay buffer (size 500) and sampled in batches (size 16) for stable 

learning (Mnih et al., 2015). This reinforcement learning component enables real-time therapy adjustments based on 

the child's current brain activity and emotional state (Ali et al., 2020).  

 
VR-Based Therapy Delivery  

 

The VR therapy environment, implemented in Pygame within the VR Therapy Interface class, delivers interventions 

by adjusting therapy parameters based on the DQN's output. These parameters include language complexity (scaled 

0.1–1.0), sensory intensity (0.1–1.0), and social interaction level (0.0–1.0) (Mesa-Gresa et al., 2018). The interface 

incorporates user-centered design elements, including gamification and real-time feedback to enhance engagement 

and accessibility (Frauenberger et al., 2013). Update frequency is modulated at 0.5-second intervals, ensuring therapy 

delivery is aligned with the child's emotional state (Frauenberger et al., 2013). The VR system updates in real-time, 

providing immediate feedback as recommended for ASD interventions (Whyte et al., 2015). This adaptive VR delivery 

mechanism translates cognitive state predictions into personalized therapy adjustments, creating a dynamic, immersive 

training environment for children with ASD (Liu & Laie, 2023).  

 

RESULTS 

 

This section presents the results of the neuroadaptive digital twin system for ASD language therapy training, focusing 

on therapy effectiveness metrics, training performance, and real-time adaptation capabilities. The system was 

evaluated on a validation set derived from the Auditory Evoked Potential EEG-Biometric Dataset, using the 

transformer-based digital twin model and DQN-driven VR adjustments described in the methodology. Results are 

compared to a prior run to highlight progress, and key findings are contextualized with literature to assess alignment 

with expected outcomes (Wang et al., 2024; Chikhi et al., 2022).  

 

Therapy Effectiveness Metrics   

 

The system’s effectiveness was assessed using three primary metrics: high engagement (percentage of predictions > 

0.6) and low anxiety (percentage of predictions < 0.5), reflecting the therapeutic goals of maximizing engagement 

and attention while minimizing anxiety (Kerns, 2016), see Figures 1 and 2. 

 

In Run 2, engagement prediction accuracy increased to 79.1% from 44.2% in Run 1, thanks to refined cognitive labels 

incorporating gamma power and VR gamification elements that enhance interaction. This aligns with the literature 

suggesting that engagement rates above 70% are necessary for effective ASD interventions. Anxiety remained stable 

at 44.2%, showing consistent modeling despite label changes, but still below the 90% goal, possibly due to fluctuations 

in frontal asymmetry- a biomarker of emotional regulation in ASD. Attention stayed at 20.9%, indicating limitations 

in capturing ASD-specific attention patterns and emphasizing the need for higher levels (> 2019%) for effective 

therapy. The final therapy score improved from 1.64 to 2.45, calculated using the reward function that accounts for 

engagement, efficiency, anxiety, and attention; however, attention deficits constrained progress. To determine how 

specific EEG features contributed to model predictions for each cognitive state, important scores derived from the 

trained model was analyzed. Figure 3 presents a heatmap showing the relative importance of each EEG feature. 
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Figure 2. Comparison of Therapy Effectiveness Metrics Between Run 1 and Run 2 

 
                   Figure 3. Feature Importance Heatmap for EEG-Based Cognitive State Prediction 

 

Training Performance   

 

Training performance was evaluated over 100 epochs, with early stopping (patience = 30) triggered after 22 epochs. 

Run 1 was trained for 20 epochs, Run 2 for 25, showing slight stability gains from cyclical learning rates (Smith, 

2017). Yet, validation loss rose from 0.3371 (Run 1) to 24.3258 (Run 2), despite regularization, dropout, and noise-

based augmentation (Tremblay, 2019). The training loss decreased from 1.0140 to 0.9839, indicating overfitting 

(Srivastava, 2014). The discrepancy highlights the need for more regularization and data diversity, as EEG models 

often struggle with generalization due to inter-subject variability in ASD (Bosl, 2011). See Figure 3. 
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Table 2: Longitudinal View of System Performance  

 

Metric Run 1 Run 2 

High Engagement (>0.6) 44.2% 79.1% 

Low Anxiety (<0.4) 44.2% 44.2% 

Good Attention (>0.5) 20.9% 20.9% 

Final Therapy Outcome Score 1.64 2.45 

 

 
Figure 4. Engagement Improvement Prediction Accuracy Between Runs 1 and 2 

DISCUSSION 

 

This study shows that an EEG-driven digital twin system, enhanced with VR gamification and gamma labels, 

significantly improved user engagement from 44.2% to 79.1%, surpassing the 70% effective intervention threshold 

(Salomone, 2015). This aligns with the idea that high-frequency EEG features like beta and gamma are linked to 

increased cognitive activation (van Son et al., 2019; Chikhi et al., 2022). Gamification elements, such as progress bars 

and badges, likely boosted motivation, encouraging focus during therapy. Despite increased engagement, attention 

and anxiety measures remained unchanged at 20.9% and 44.2%. The lack of improvement in attention may stem from 

variability in attentional biomarkers across individuals with ASD, suggesting that a one-size-fits-all model is 

insufficient, especially since it may overemphasize gamma signals at the expense of theta frequencies. The static 

anxiety levels indicate the system’s ability to recognize calmer states but not improve them. Anxiety markers are 

sensitive to traits and fluctuations, possibly needing additional features like heart rate variability or pupil dilation for 

better accuracy. The plateau highlights the challenge of balancing engagement with therapeutic goals, as gamification 

might elevate arousal. The system's decision policy dynamically responded to cognitive states, increasing language 

complexity during high engagement, providing calming breaks when needed, and using visual supports for attention 

lapses. These adaptive behaviors support the principles of reinforcement learning (Mnih et al., 2015; Ali et al., 2020). 

However, modest outcome improvements suggest that further refinements, such as integrating multiple physiological 

inputs like EEG, HRV, and GSR, may be necessary to enhance intervention specificity.  
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Limitations   

 

Despite improvements, the attention metric stays at 20.9% (> 0.5), even after adding beta power, gamma power, and 

spectral entropy, showing model limitations in capturing complex temporal dependencies in ASD children. Validation 

loss rose to 24.3258, indicating ongoing overfitting despite L2 regularization, variational dropout, and data 

augmentation, highlighting the need for stronger regularization. Lack of ground truth validation and a formal VV 

framework limits simulation reliability, crucial for ModSim. The VR interface now includes gamification and 

interactivity but remains basic (Pygame-based) and lacks full immersion, such as 3D graphics and spatial audio, which 

could improve engagement.  

 

Future Directions 

 

Building on promising engagement gains, further development can enhance the system’s utility and robustness. 

Improving modeling of temporal dependencies is vital; future work should explore sequence-model architectures like 

LSTM, GRU, or Transformers to capture EEG feature evolution over time, combined with regularization to prevent 

overfitting. Integrating a safety-focused verification framework, such as conformal prediction and interpretability 

methods, will increase confidence before clinical use. The VR interface can be expanded with 3D graphics, spatial 

audio, haptic feedback, and real-time performance metrics to personalize therapy. Including more diverse participants 

is crucial for model applicability across the ASD spectrum. To further improve emotion recognition and therapy 

personalization, future version should incorporate heart rate variability (HRV) and galvanic skin response (GSR). By 

combining EEG with autonomic signals, the system could better differentiate between positive and negative arousal. 

 

 

Implications for Practice  

 

The combination of EEG monitoring and VR gamification shows great promise for ASD therapy, but it must be 

carefully integrated into clinical practice. Clinicians should use real-time EEG metrics alongside traditional 

assessments to tailor session content, pacing, and difficulty to each child’s needs. Gamified VR can boost motivation, 

yet practitioners must be aware of inter-subject EEG variability and overfitting risks. Parents and caregivers should 

learn to interpret engagement and anxiety readouts and continue standard clinical evaluations. Successful deployment 

also requires training clinicians in VR operation, neurophysiological signal interpretation, and machine-learning logic, 

as well as ensuring data privacy, hardware access, and compatibility with electronic health records. Thoughtful 

adoption of these tools can enable truly personalized, efficient ASD interventions. 

 

CONCLUSION 

 

This study demonstrates that an EEG-driven digital twin framework, enriched with VR gamification and refined 

Gamma-power labels, significantly increases engagement in ASD therapy, reaching 79.1 %, well above clinical 

benchmarks. While attention and anxiety metrics haven't yet improved, the system’s real-time adaptive capability 

proves neuroadaptive interventions can tailor actions to cognitive and emotional states. Overcoming limitations like 

capturing temporal dependencies, preventing overfitting, and enhancing sensory immersion through advanced 

modeling, verification, and VR will unlock full potential. Expanding trials to diverse ASD populations and adding 

multimodal inputs can further improve intervention effectiveness. Combining neurophysiology, machine learning, and 

immersive tech provides a foundation for personalized, scalable ASD treatments. Continued innovation and 

integration into practice will enable interventions that help children with ASD reach their full communicative and 

social potential. 
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