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ABSTRACT 

 

Logistical strategies for operational deployment remain underdeveloped, particularly within synthetic blood supply 

chains designed for use in emergencies, rural, or conflict-affected environments (Estep, 2025; Horstkemper & Reuter-

Oppermann, 2022). While substantial progress has been made in the biochemical formulation and clinical validation 

of hemoglobin-based oxygen carriers (HBOCs) and perfluorocarbon emulsions (PFCs), far less attention has been 

given to the infrastructure and decision-making systems required to deliver these products effectively. Most existing 

studies focus on efficacy, storage conditions, and adverse event profiles, but rarely consider how variability in 

transport, facility access, and inventory degradation shapes deployment success under field conditions. Conventional 

blood supply chain models typically rely on fixed demand patterns, consistent infrastructure, and cold-chain 

requirements, limiting their applicability in unstable or resource-limited settings. Simulation platforms such as 

BloodChainSim provide valuable insights into process efficiency but often overlook the specific risks, degradation 

timelines, and clinical trade-offs unique to synthetic blood. They also tend to exclude dynamic decision-making 

models that account for shifting priorities during crises. As synthetic blood products move closer to clinical 

implementation, there is a growing need for planning tools that accommodate variable demand, multiple transportation 

modes, and shelf-life constraints. Simulation-based logistics frameworks must balance delivery speed, patient safety, 

and system resilience while remaining adaptable across use cases ranging from humanitarian aid to battlefield 

medicine. Addressing these logistical gaps is critical to realizing the full value of synthetic blood technologies in real-

world trauma care and emergency medical response. 
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 INTRODUCTION  

 

Access to compatible blood transfusions is a critical determinant of survival in trauma care, emergency medicine, and 

battlefield scenarios (Jahr, 2022; Estep, 2025). However, in rural, mobile, or conflict-affected settings, conventional 

blood supply chains often fail due to limited donors, cold-chain dependencies, and long transport times (Glick et al., 

2020; Arani et al., 2021; Estrada et al., 2025). Synthetic blood products, such as hemoglobin-based oxygen carriers 

(HBOCs) and perfluorocarbon emulsions (PFCs), offer transformative potential. These substitutes are shelf-stable for 

years, require no cross-matching, and can rapidly deliver oxygen (Kim et al., 2024; Vichare & Janjic, 2025). Yet 

logistical integration remains underexplored, especially in field environments where degradation, delivery delays, and 

coordination challenges persist (Horstkemper & Reuter-Oppermann, 2022; Estep, 2025). 

 

This paper presents a discrete-event simulation (DES) framework that models synthetic blood deployment from 

production to transfusion in emergencies and resource-limited settings. The DES model makes a unique contribution 

by integrating stochastic trauma demand with real-time degradation kinetics, enabling the optimization of inventory 

thresholds and delivery strategies under uncertainty. The model accounts for system degradation, delivery logistics, 

and clinical safety trade-offs such as MI and CARPA risks. 

 

Distinct from prior models, such as BloodChainSim, this framework introduces multi-facility scalability, dynamic 

resource allocation via drones, and degradation-aware inventory strategies specifically tailored for synthetic blood 
products. These innovations support data-driven decision-making for humanitarian aid, disaster response, and military 

healthcare logistics by providing comprehensive bottleneck analysis and policy evaluation capabilities under crisis 

conditions. 

 

Although the safety and biochemical properties of synthetic blood products are well documented (Jahr, 2022; Kim et 

al., 2024), few studies have modeled their logistical deployment in emergency or resource-limited environments 

(Estrada et al., 2025; Horstkemper & Reuter-Oppermann, 2022). Existing simulations often overlook degradation 

kinetics, variable trauma demand, and trade-offs in delivery between transport modes. 

  

RELATED WORK 

 

Advancements in Synthetic Blood Technologies 

 

Synthetic blood products have gained attention as alternatives to red blood cell transfusions, especially in settings with 

limited infrastructure or donor availability (Khan et al., 2020; Estrada et al., 2025). Hemoglobin-based oxygen carriers, 

such as Hemopure, offer room temperature stability and can reduce dependence on donor blood in trauma care (Jahr, 

2022). Perfluorocarbons like Fluosol and Oxygent provide high oxygen solubility but present concerns regarding 

emulsification breakdown and immune responses (Kim et al., 2024; Vichare & Janjic, 2025). While clinical outcomes 

are promising, most literature focuses on biochemical performance and adverse events such as myocardial infarction 

with HBOCs and CARPA reactions with PFCs. Logistical strategies for operational deployment remain 

underdeveloped (Estep, 2025; Horstkemper & Reuter-Oppermann, 2022). 

 



 

 

 

MODSIM World 2025 

2025 Paper No. 81 Page 3 of 11 

Blood Supply Chain Simulation Models 

 

Discrete event simulation (DES) models healthcare systems, such as emergency departments and surgical workflows 

(Brailsford & Vissers, 2010). Blood supply chain simulations utilize DES to minimize stockouts and evaluate 

inventory strategies under varying demand levels (Glick et al., 2020; Arani et al., 2021). These models usually assume 

conventional blood products and stable infrastructure. BloodChainSim advances blood supply chain modeling with 

agent-based elements to simulate crises and evaluate digital innovations in blood logistics (Horstkemper & Reuter-

Oppermann, 2022). While it models conventional blood supply chains and crisis decision-making, it overlooks 

specific factors of synthetic blood products, such as degradation, costs, and safety risks (Kim et al., 2024). This study's 

model builds on BloodChainSim's crisis simulation but extends it for synthetic blood, incorporating HBOC 

autoxidation, PFC emulsion breakdown, clinical risks like MI and CARPA, and multimodal delivery including drones. 

 

Unmanned aerial vehicles are increasingly used to deliver medical supplies in remote or low-resource areas. Programs 

like Zipline have reduced delivery times from several hours to under 30 minutes, improving emergency response 

(Glick et al., 2020). While simulation studies support the effectiveness of drone logistics, they have not yet been 

adapted for synthetic blood, which introduces additional challenges related to stability, storage, and clinical safety. 

This study addresses those gaps by introducing a DES framework that incorporates production timelines, clinical risks, 

and geospatial constraints to evaluate deployment strategies in critical care settings. The model uniquely combines 

synthetic blood-specific parameters with crisis-responsive logistics, filling a critical void in emergency preparedness 

planning for next-generation blood substitutes. 

 

METHODOLOGY 

 

This study employed a DES approach to model and optimize the production, storage, and deployment of synthetic 

blood products, HBOCs, and PFCs, in emergency and resource-limited clinical settings. The simulation was designed 

to address critical challenges in blood supply chain management during crises, building on insights from prior research 

that identify limitations in actor representation and dynamic decision-making (Horstkemper & Reuter-Oppermann, 

2022; Arani et al., 2021). Our methodology integrates advanced simulation techniques, real-world data, and dynamic 

system modeling to provide a competitive framework for evaluating deployment strategies. The model was structured 

in four progressive phases to ensure robustness, scalability, and practical relevance. 

 

Model Structure and Processes 

 

The DES model simulated a synthetic blood supply chain across production, inventory, delivery, and trauma demand, 

with a focus on emergency deployment. Unlike conventional models that overlook dynamic decisions or exclude key 

actors (Arani et al., 2021), this model incorporates full process representation with real-time state transitions, adapting 

hybrid agent-based/DES frameworks, such as BloodChainSim (Horstkemper & Reuter-Oppermann, 2022), for 

synthetic blood. A centralized facility produced HBOCs and PFCs in batches. HBOCs required 5–7 days (500–1,000 

L), PFCs 3–5 days (100–300 L), with a 7.5% failure rate. Unit costs were $10,000 for HBOC and $2,000 per liter for 

PFC (Estrada et al., 2025; Vichare & Janjic, 2025). 

Table 1.  Simulation Parameters 

Parameter Value Source Parameter Value Source 

HBOC Prod. 5-7 days Jahr, 2022 Drone Delivery 0.5h Roberts et al., 2018 

PFC Production 3-5 days Kim et al., 2024 Trauma Demand 4-10 units Holcomb et al., 2005 

Production Fail 7.5% Khan et al., 2020 HBOC MI Risk 2.01% Estep, 2025 

HBOC Autoxidation 0.22 h⁻¹ Estep, 2025 PFC CARPA Risk 1% Kim et al., 2024 

PFC Degradation 1×10-5 h Vichare & Janjic,2025 HBOC Cost $10K/unit Estrada et al., 2025 

Drone Failure 1.8% Glick et al., 2020 Drone Cost $75K Glick et al., 2020 
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Figure 1: Digital Twin Logistics 

Inventory Management 

 

Delivery 

A 75% drone allocation was used, based on prior innovations in blood logistics (Horstkemper & Reuter-Oppermann, 

2022). Drones took 0.5 hours (1.8% failure), land transport took 2–6 hours, and weather-related failure was 2.3% 

(Glick et al., 2020). Delay multipliers were applied by setting: urban (1.0), rural (1.2), remote (1.5), and conflict (2.5) 

(Arani et al., 2021). 

 

Trauma Demand 

Patient arrivals were modeled as a Poisson process, representing random events at a constant rate, with arrival rates 

differing by facility type (Arani et al., 2021; Estrada et al., 2025). Each trauma patient needs 4–10 units of blood 

substitute, aligning with severe hemorrhage protocols. Safety considerations influenced delivery via product-specific 

adverse event rates: HBOCs carry a 2.01% MI risk due to vasoactive properties, while PFCs have a 1% risk of 

CARPA—an immune response causing cardiovascular and pulmonary symptoms (Estep, 2025; Kim et al., 2024). A 

PFC equivalence factor was set, where 1 liter of PFC provides oxygen-carrying capacity equivalent to 0.5 liters of 

HBOC for substitution. This ratio prioritizes HBOC delivery, using PFC only during shortages to balance oxygen 

needs, safety, and inventory management (Kim et al., 2024; Vichare & Janjic, 2025). 

 

System Dynamics 

A Markov chain-governed system has states (Operational, Delayed, Emergency, Failure), which are affected through 

multipliers (e.g., 2.0× in Failure). A ±10% perturbation simulated uncertainty, adapted from dynamic decision models 

(Horstkemper & Reuter-Oppermann, 2022). 
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EXPERIMENTAL DESIGN 

Part 1: Model Development and Initial Simulation 

The initial simulation established a baseline performance and identified optimal parameters through a full Monte Carlo 

sensitivity analysis (32,400 runs, each lasting 90 days). Parameter combinations included HBOC thresholds (4–12 

units), PFC thresholds (8–24 liters), drone splits (0.5–0.9), arrival rates (4.8–6.0 hours, simulating 4–5 patients/day), 

and PFC degradation rates (0.00001–0.0001 h⁻¹). This broad sweep enabled a thorough exploration of the design 

space, offering an advantage over models with narrower testing scopes (Arani et al., 2021). Key performance metrics 

included stockout probability (target: <5%), delivery delay (target: <2 hours), MI and CARPA incidents, cost, and 

product waste. The optimal configuration, HBOC threshold of 8 units, PFC threshold of 16 liters, drone split of 0.75, 

and PFC degradation rate of 0.00001 h⁻¹, achieved stockout probabilities of 0–0.14% and delivery delays of 1.75–6.46 

hours. The total cost for a single-drone setup was $75,000 (Glick et al., 2020). 

 

Part 2: Validation and Sensitivity Analysis 

To validate the optimal parameters, a reduced Monte Carlo analysis was conducted with 200 simulations (90 days 

each), focusing on two arrival rates (4.8 and 6.0 hours) to represent varying demand intensities, including conflict 

conditions. This phase modeled a single hospital with one drone and used the same processes as earlier phases. 

Delay causes were logged by system state, location, and facility to identify bottlenecks, drawing from 

BloodChainSim's operational focus (Horstkemper & Reuter-Oppermann, 2022). Box plots were used to analyze delays 

by Markov state (Operational, Delayed, Emergency, Failure) and location type (urban, rural, remote, conflict), offering 

more detailed insights than static models (Arani et al., 2021). The parameters proved robust: stockout probabilities 

remained below 5% (M = 0.001 for 4.8-hour arrival rate, M = 0.000 for 6.0), and delivery delays slightly exceeded 

the 2-hour target (M = 2.35 and 2.30 hours; SD = 1.72 for both). Each run averaged 1.48 seconds, demonstrating 

strong computational efficiency. 

 

Part 3: Real-World Data Integration and Scalability 

The model was extended to a multi-facility setup simulating an urban hospital (4 patients/day, arrival rate: 6 hours) 

and a conflict clinic (10 patients/day, arrival rate: 2.4 hours), based on trauma demand estimates from Arani et al. 

(2021) and Estrada et al. (2025). Two shared drones were modeled at a total cost of $150,000 (Glick et al., 2020).Real-

world parameters included a conflict delay multiplier of 2.5, a Markov transition matrix with a 0.7 operational 

probability (Horstkemper & Reuter-Oppermann, 2022), and a PFC equivalence factor—a clinical conversion ratio 

where 1 liter of PFC was considered equivalent to 0.5 liters of HBOC in terms of oxygen-carrying capacity and clinical 

substitution potential (Kim et al., 2024; Vichare & Janjic, 2025). This equivalence factor enables the simulation to 

substitute PFC for HBOC when inventory shortages occur, maintaining therapeutic effectiveness while optimizing 

resource allocation. A disaster mode simulated surge demand of 12 patients per facility over 24 hours, reflecting crisis 

conditions studied by Horstkemper and Reuter-Oppermann (2022). The simulation ran 100 iterations (90 days each), 

logging delay causes and generating box plots to assess scalability. This multi-facility configuration, combined with 

surge conditions, captured the dynamics of shared resources and crisis impacts more effectively than single-facility 

models. Runtime averaged 1.79 seconds, demonstrating efficiency despite increased complexity. 

Part 4: Policy Implementation and Validation 

The final phase validated deployment strategies through a real-world case study to ensure practical use in emergencies 

(Horstkemper & Reuter-Oppermann, 2022). A conflict zone hospital was modeled using data from a 500-bed Egyptian 

facility (Arani et al., 2021), with a daily demand of 35.4 units (29.6% emergency, 38.2% medical, 32.2% operative) 

and a supply of 21.1 units. Demand was scaled for synthetic blood (HBOC/PFC). The simulation used optimal 

parameters from Part 1 (HBOC threshold=8, PFC threshold=16, drone split=0.75, PFC degradation=0.00001 h⁻¹) and 

tested two policies: increasing drone split to 90% and pre-positioning synthetic blood stocks (200 HBOC units, 400 

PFC liters). It ran 100 iterations (90 days each), including disaster mode (12 patients/day for 24 hours) to simulate 

crisis conditions. Delay causes were logged to evaluate the effectiveness of the intervention, with a focus on reducing 

bottlenecks. Results will be validated using hospital data from organizations like WCBS or SANBS, supporting real-

world alignment for healthcare digital twin applications (Estrada et al., 2025). The simulation averaged 1.73 seconds 

over 100 runs. 
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Data Analysis 

 

Simulation outputs were assessed across all phases using key performance metrics: stockout probability, average 

delivery delay, MI and CARPA incidents, total cost, and product waste, aligned with indicators from blood supply 

chain literature (Arani et al., 2021). Delivery delays were further analyzed by system state (Operational, Delayed, 

Emergency, Failure), geographic setting (urban, rural, remote, conflict), and facility type (urban hospital and conflict 

clinic in Part 3; conflict hospital in Part 4) to identify bottlenecks, following BloodChainSim's operational focus 

(Horstkemper & Reuter-Oppermann, 2022). Variability across these metrics helped characterize system behavior 

under diverse conditions. This methodology offers competitive advantages over prior models by incorporating full 

actor representation from production to transfusion, enabling realistic multi-facility supply chain dynamics often 

excluded in centralized frameworks (Arani et al., 2021; Horstkemper & Reuter-Oppermann, 2022). Integration of 

Markov state transitions and adaptive delivery mode selection supports real-time crisis response, while disaster mode 

enables realistic surge modeling, addressing major gaps in synthetic blood logistics. 

 

Real-world trauma demand and multi-site simulation further improve scalability and relevance beyond single-facility 

models (Arani et al., 2021; Estrada et al., 2025). Runtime efficiency was consistently strong, averaging 2.28 seconds 

in Part 2, 1.70 in Part 3, and 1.73 in Part 4, enabling high-volume, iterative Monte Carlo testing. These features 

collectively demonstrate a robust framework for optimizing synthetic blood deployment and advancing the abstract's 

goals of modeling, bottleneck analysis, policy evaluation, and logistical planning under uncertainty.  

 

RESULTS 

The DES model was executed in four phases to evaluate synthetic blood deployment under varying operational 

conditions, using metrics such as stockout probability, delivery delay, MI and CARPA incidents, total cost, and waste. 

Part 1 identified optimal parameters via Monte Carlo analysis. Part 2 validated them across two trauma arrival rates. 

Part 3 tested the model in a multi-facility scenario with disaster surges. Part 4 applied policy interventions at a conflict 

hospital. Means (M) and standard deviations (SD) are reported throughout. 

Part 1: Initial Simulation 

An initial Monte Carlo sensitivity analysis with 32,400 runs over 90 days tested combinations of HBOC thresholds 

(4–12 units), PFC thresholds (8–24 liters), drone splits (0.5–0.9), arrival rates (4.8–6.0 hours), and PFC degradation 

rates (0.00001–0.0001 h⁻¹). It identified optimal parameters: HBOC Threshold = 8 units, PFC Threshold = 16 liters, 

Drone Split = 0.75, and PFC Degradation Rate = 0.00001 h⁻¹. Stockout probabilities ranged from 0% to 0.14%, below 

the 5% target, while delays ranged from 1.75 to 6.46 hours, indicating possible bottlenecks. The total cost for a single 

drone setup was $75,000 (Glick et al., 2020). This phase confirmed the robustness of these parameters under varying 

patient arrival rates. 

Part 2: Validation and Sensitivity Analysis 

A reduced Monte Carlo sensitivity analysis (200 runs, 90 days each) validated the optimal parameters across two 

arrival rates (4.8 and 6.0 hours, equivalent to ~5 and ~4 patients/day, respectively) for a single hospital with one drone. 

Results are summarized in Table 2. 

Table 2.  Simulation Results Across All Experimental Phases (90 Days) 

Phase Phase Scenario Arrival 

Rate 

Stockout 

Prob 

 (M ± SD) 

Delivery 

Delay  

(hrs, 

M+SD) 

Total Cost 

(S, MI SD) 

MI 

Incidents 

(M) 

Part 2 Single Hospital 4.8 hours 0.001 ± 0.001 2.35 ± 1.72 75,000 ± 0 8.62 

Part 2 Single Hospital 6.0 hours 0.000 ± 0.001 2.30 ± 1.72 75,000 ± 0 7.28 

Part 3 Multi-Facility +Disaster Multi-facility 0.001 ± 0.001 2.92 ± 1.32 150,000 ± 0 26.14 

Part 4 Conflict Zone +Policy 1.692 hours 0.001 ± 0.001 2.15 ± 1.32 225,000 ± 0 19.14 
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Stockout probabilities consistently remained below the 5% target, confirming the robustness of the optimal 

parameters. However, delivery delays exceeded the 2-hour benchmark, averaging 2.35 hours (SD = 1.72) at a 4.8-

hour arrival rate and 2.30 hours (SD = 1.72) at a 6.0-hour arrival rate, indicating delivery inefficiencies. To mitigate 

these delays, potential strategies include increasing drone fleet size from 75% to 90% allocation, implementing pre-

positioned inventory at high-risk locations, and establishing redundant delivery routes during system failures. These 

interventions are tested in subsequent phases and show promise for reducing delivery bottlenecks. Simulations were 

implemented in Python 3.x using SimPy on an Apple M1 MacBook, achieving runtime efficiency of 1.48-1.79 seconds 

per iteration across all experimental phases. 

 
 

Figure 1: Stockout Probability vs. Delivery Delay by Drone Split (Part 2) 

 

Figure 1 demonstrates the optimization trade-off between maintaining low stockout rates and achieving target delivery 

times. Points represent simulation runs across two arrival rates (4.8 and 6.0 hours) with 75% drone allocation, showing 

that optimal performance clusters near zero stockout probability while delivery delays remain above the 2-hour target. 

 
Figure 2: Delivery Delays by Markov State (Part 2) 
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Figure 2 reveals critical bottlenecks in system performance, with Failure states exhibiting the longest delays (median 

= 1.49 hours) followed by Emergency conditions. The box plots demonstrate how system state transitions directly 

impact delivery efficiency, with Operational states maintaining the shortest delays. 

 
Figure 3: Delivery Delays by Location (Part 3) 

Figure 3 illustrates the substantial geographic disparities in delivery performance, with conflict zones experiencing 

the most severe delays (median = 1.32 hours) compared to urban areas (median = 0.54 hours). The progression from 

urban to conflict settings demonstrates escalating logistical challenges that compound delivery inefficiency. 

 

Part 3: Real-World Data Integration and Scalability 

The multi-facility simulation (100 runs, 90 days each) modeled an urban hospital (4 patients/day, arrival rate: 6 hours) 

and a conflict clinic (10 patients/day, arrival rate: 2.4 hours) with two shared drones, incorporating disaster mode (12 

patients/day per facility for 24 hours).  

Stockout probabilities remained low (M = 0.001), but delivery delays rose to 2.92 hours, exceeding both the 2-hour 

target and Part 2's average of 2.35 hours (at a 4.8-hour arrival rate). This increase resulted from surge demand during 

disaster mode (~1,284 patients total, including 24 from the surge), which strained the two shared drones. MI incidents 

(M = 26.14) reflected the increased volume and aligned with the expected 2.01% risk (≈ 25.81). No PFC waste or 

CARPA events occurred, likely due to the effective substitution of HBOC. The total cost doubled to $150,000 with 

the expanded drone setup. 

 

Part 4: Policy Implementation and Validation 

Part 4 simulated a conflict zone hospital (demand: 35.4 units/day, ~5 patients/day; supply: 21.1 units/day) with one 

drone, implementing two policy interventions: increasing the drone split to 90% (from 75%) and pre-positioning 

stocks (200 HBOC units, 400 PFC liters). The simulation (100 runs, 90 days each) included disaster mode (12 

patients/day for 24 hours).  

Stockout probabilities remained low (M = 0.001), but delivery delays rose to 2.92 hours, exceeding both the 2-hour 

target and Part 2’s average of 2.35 hours (at a 4.8-hour arrival rate). This increase resulted from a surge in demand 

during disaster mode (~1,284 patients total, including 24 from the surge), which strained the two shared drones. MI 

incidents (M = 26.14) reflected the increased volume and aligned with the expected 2.01% risk (≈ 25.81). No PFC 

waste or CARPA events occurred, likely due to effective HBOC substitution. The total cost doubled to $150,000 with 
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the expanded drone setup. Failure state had the longest delays (median: 2.50 hours, IQR: 1.00–10.63, max: 27.41), 

followed by Emergency (median: 1.875, max: 26.75), with Operational delays lowest (median: 1.25). Conflict zones 

experienced the greatest geographic delays (median: 1.25, IQR: 1.25–1.50, max: 27.41) compared to urban areas 

(median: 0.50, max: 10.85), and the conflict clinic consistently saw higher delays than the urban hospital. 

Comparison Across Phases 

Across phases, stockout probabilities consistently met the <5% target (Part 2: 0.000–0.001, Part 3: 0.001, Part 4: 

0.001), demonstrating system reliability. Delivery delays showed varying performance: Part 2 (M = 2.35 hours, with 

an arrival rate of 4.8 hours), Part 3 (M = 2.92 hours in disaster mode), and Part 4 (M = 2.15 hours with policy 

interventions). The 90% drone split in Part 4 was particularly effective in conflict zones, as it reduced delays by 

prioritizing faster drone deliveries. Pre-positioned stocks ensured supply availability during surges, contributing to 

zero PFC wastage across all phases, an unexpected finding that highlights the potential for optimizing resource-limited 

settings. The progressive testing across four phases demonstrated the model's capability to handle increasingly 

complex scenarios, from single-facility optimization to multi-facility crisis management and policy intervention 

testing. This systematic approach validates the framework's utility for real-world deployment planning in emergency 

and resource-limited clinical settings. 

DISCUSSION 

This simulation framework evaluated scalable deployment strategies for synthetic blood products in emergency and 

resource-limited settings by modeling production, degradation, trauma-driven demand, and delivery logistics. Results 

showed that configurations such as HBOC thresholds of 8 units, 75% drone allocation, and pre-positioned stockpiles 

consistently kept stockout rates below 5% and ensured timely delivery, addressing key weaknesses in traditional blood 

supply chains.  

 

The use of a stochastic Markov chain enabled precise identification of delivery bottlenecks by system state and 

location, highlighting conflict zones and surge scenarios as critical vulnerabilities. Differentiating HBOCs and PFCs 

by associated health risks (e.g., oxidative stress and CARPA reactions) ensured patient safety remained central to 

logistics decisions. Beyond technical innovation, the model demonstrates the value of digital twin technology in 

humanitarian logistics through its modular design, clinical relevance, and potential for real-time planning integration. 

Limitations 

The model does not include regulatory challenges, clinical adoption timelines, or institutional constraints, which could 

lead to an overestimation of feasibility in some areas. Geospatial delays are simplified using categorical multipliers, 

which omit real-world factors such as terrain, political instability, and infrastructure quality. Cost estimates remain 

static and do not reflect market changes or economies of scale. 

Clinical modeling focuses on acute adverse events without accounting for broader outcomes or long-term efficacy. 

Behavioral and organizational factors like staff coordination and training are also excluded despite their importance. 

Future Directions 

To strengthen the model's utility and realism, future work should integrate geographic information systems for terrain-

aware delivery modeling. Incorporating satellite imagery, road access data, and infrastructure indices would support 

more accurate transport decisions across diverse environments. Expanding the framework into a live digital twin 

would allow real-time updates from sensors, facility data, weather conditions, and supply chain metrics, improving 

responsiveness during emergencies. Clinically, the model could include triage algorithms and outcome-based metrics 

such as time to transfusion and predicted survival rates to better assess patient-level impact. From an economic 

perspective, linking logistics costs to broader health system expenditures and opportunity costs would allow a more 

comprehensive evaluation of cost-effectiveness. The architecture is also flexible enough to be adapted for other critical 

medical resources including lyophilized plasma, portable oxygen systems, and cold-chain-dependent biologics, 

making it broadly applicable to emergency response and humanitarian logistics scenarios. 
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Implications for Practice 

This framework provides healthcare planners, emergency responders, and humanitarian organizations with a robust, 

data-driven tool to guide critical logistical decisions. It informs the development of stockpiling protocols, drone 

allocation strategies, and surge response models in regions where traditional blood supply systems are unstable or 

inaccessible. By simulating operations prior to deployment, the model enhances operational preparedness, mitigates 

risk, and ensures timely access to life-saving resources. 

In addition to public health and humanitarian contexts, the framework offers significant value for military and private 

sector applications. Military medical logistics can use the model to optimize synthetic blood distribution in combat 

zones and field hospitals, ensuring readiness under high-stakes conditions. Private healthcare systems, including 

remote clinics and urgent care networks, can adopt the framework to streamline inventory management, improve 

delivery reliability, and reduce waste. Its flexibility makes it an essential tool for strengthening resilience, efficiency, 

and responsiveness across the healthcare industry. 

CONCLUSION 

This study presents a robust and scalable simulation framework for evaluating synthetic blood production and 

deployment strategies under conditions of uncertainty and operational stress. By modeling production timelines, 

degradation kinetics, patient demand, and logistics pathways, the discrete-event simulation accurately captured critical 

performance metrics across diverse scenarios. Validation through sensitivity analysis and policy case studies 

demonstrated the model's value in informing practical emergency preparedness and humanitarian logistics planning. 

The findings suggest that synthetic blood can be viably integrated into trauma care logistics systems, especially when 

supported by proactive stockpiling and high drone coverage. As synthetic blood technologies approach clinical 

maturity, simulation tools like the one developed here will be crucial for optimizing distribution, mitigating risk, and 

facilitating deployment in low-resource and high-demand environments. This work lays the foundation for future 

digital twin applications in emergency medicine and global health logistics, enabling simulation-based planning that 

will be essential for scaling safe and efficient deployment across civilian and military healthcare systems worldwide. 

 

The open-source simulation code is available at https://github.com/Margondai/synthetic-blood-supply-chain-

simulation. 
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